552
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Bioaccessibility and other key parameters in assessing oral exposure to PAH-contaminated soils and dust: A critical review

&
Pages 1396-1417 | Received 24 Feb 2016, Accepted 29 Apr 2016, Published online: 23 Jun 2016

References

  • Allan IJ, Semple KT, Hare R, et al. 2007. Cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and phenols in contaminated soil slurries. Environ Sci Technol 41:5498–504
  • ATSDR (Agency for Toxic Substances and Disease Registry). 1995. Toxicological Profile for Polycyclic Aromatic Hydrocarbons. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, USA
  • Bacigalupo C and Hale B. 2012. Human health risks of Pb and As exposure via consumption of home garden vegetables and incidental soil and dust ingestion: A probabilistic screening tool. Sci Total Environ 423:27–38
  • Basta NT, Rodriguez RR, and Casteel SW. 2001. Bioavailability and risk of arsenic exposure by the soil ingestion pathway. In Frankenberger WT (ed), Environmental Chemistry of Arsenic. Marcel Dekker, New York, NY, USA
  • Beriro DJ, Cave MR, Wragg J, et al. 2016. A review of the current state of the art of physiologically based tests for measuring human dermal in vitro bioavailability of polycyclic aromatic hydrocarbons (PAH) in soil. J Hazard Mater 305:240–59
  • Bordelon NR, Donnelly KC, King LC, et al. 2000. Bioavailability of the genotoxic components in coal tar contaminated soils in Fischer 344 Rats. Toxicol Sci 56:37–48
  • Cachada A, Pato P, Rocha-Santos T, et al. 2012. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci Total Environ 430:184–92
  • Calabrese EJ, Stanek EJ, Pekow P, et al. 1997. Soil ingestion estimates for children residing on a superfund site. Ecotoxicol Environ Saf 36:258–68
  • Cave MR, Wragg J, Denys S, et al. 2011. Dealing with Contaminated Sites, Chapter 7 – Oral Bioavailability. Springer Science + Business Media B.V., Bilthoven, The Netherlands
  • Cave MR, Wragg J, Harrison I, et al. 2010. Comparison of batch mode and dynamic physiologically based bioaccessibility tests for PAHs in soil samples. Environ Sci Technol 44:2654–60
  • Collins CD, Craggs M, Garcia-Alcega S, et al. 2015. Towards a unified approach for the determination of the bioaccessibility of organic pollutants. Environ Int 78:24–31
  • Collins CD, Mosquera-Vazquez M, Gomez-Eyles JL, et al. 2013. Is there sufficient ‘sink’ in current bioaccessibility determinations of organic pollutants in soils? Environ Pollut 181:128–32
  • Collins JF, Brown JP, Alexeeff GV, et al. 1998. Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul Toxicol Pharm 28:45–54
  • Dean JR and Ma R. 2007. Approaches to assess the oral bioaccessibility of persistent organic pollutants: A critical review. Chemosphere 68:1399–407
  • DIN (Deutsches Institut fur Normung). 2000. Soil Quality - Absorption Availability of Organic and Inorganic Pollutants from Contaminated Soil Material: DIN E 19738, DIN, Berlin, Germany
  • Doyle JR, Blais JM, Holmes RD, et al. 2012. A soil ingestion pilot study of a population following a traditional lifestyle typical of rural or wilderness areas. Sci Total Environ 424:110–20
  • Gouliarmou V, Collins CD, Christiansen E, et al. 2013. Sorptive physiologically based extraction of contaminated solid matrices: Incorporating silicone rod as absorption sink for hydrophobic organic contaminants. Environ Sci Technol 47:941–8
  • Gouliarmou V and Mayer P. 2012. Sorptive bioaccessibility extraction (SBE) of soils: Combining a mobilization medium with an absorption sink. Environ Sci Technol 46:10682–9
  • Gron C, Oomen A, Weyand E, et al. 2007. Bioaccessibility of PAH from Danish soils. J Environ Sci Health 42:1233–9
  • Guney M, Welfringer B, de Repentigny C, et al. 2013. Exposure assessment and risk characterization for children's exposure to Hg-contaminated soils. Arch Environ Contam Toxicol 65:345–55
  • Guney M, Zagury GJ, Dogan N, et al. 2010. Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. J Hazard Mater 182:656–64
  • Hack A and Selenka F. 1996. Mobilization of PAH and PCB from contaminated soil using a digestive tract model. Toxicol Lett 88:199–210
  • Harris KL, Banks LD, Mantey JA, et al. 2013. Bioaccessibility of polycyclic aromatic hydrocarbons: Relevance to toxicity and carcinogenesis. Expert Opin Drug Metab Toxicol 9:1465–80
  • Health Canada. 2010. Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA) v 2.0. Contaminated Sites Division, Ontario, ON, Canada
  • INERIS (Institut National de l'Environnement et des Risques). 2012. Quantités de terre et poussières ingérées par un enfant de moins de 6 ans et bioaccessibilité des polluants: État des connaissances et propositions. InVS-INERIS, Verneuil-en Halatte, France
  • Irvine G, Doyle JR, White PA, et al. 2014. SIR Determination in a rural population of Alberta, Canada practicing a wilderness lifestyle. Sci Total Environ 470–471:138–46
  • James K, Farrell RE, and Siciliano SD. 2012. Comparison of human exposure pathways in an urban brownfield: Reduced risk from paving roads. Environ Toxicol Chem 31:2423–30
  • James K, Peters RE, Laird BD, et al. 2011. Human exposure assessment: A case study of 8 PAH contaminated soils using in vitro digestors and the juvenile swine model. Environ Sci Technol 45:4586–93
  • Juhasz AL, Weber J, Stevenson G, et al. 2014. In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil. Sci Total Environ 473–474:147–54
  • Knox RC, Sabatini DA, and Canter LW. 1993. Subsurface Transport and Fate Processes. Lewis Publishing, Boca Raton, FL, USA
  • Latawiec AE, Simmons P, and Reid BJ. 2010. Decision-makers' perspectives on the use of bioaccessibility for risk-based regulation of contaminated land. Environ Int 36:383–9
  • Lerda D. 2010. Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet, 3rd ed. JRC-IRMM of European Commission, JRC 60146-2010, Geel, Belgium
  • Liao C, Chia C, Chen W, et al. 2011. Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: A preliminary probabilistic assessment. J Hazard Mater 190:150–8
  • Ljung K, Oomen A, Duits M, et al. 2007. Bioaccessibility of metals in urban playground soils. J Environ Sci Health 42:1241–50
  • Lorenzi D, Entwisthe J, Cave M, et al. 2012. The application of an in vitro gastrointestinal extraction to assess the oral bioaccessibility of polycyclic aromatic hydrocarbons in soils from a former industrial site. Anal Chim Acta 735:54–61
  • Lu M, Yuan D, Lin Q, et al. 2010. Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in topsoils from different urban functional areas using an in vitro gastrointestinal test. Environ Monit Assess 166:29–39
  • Man YB, Kang Y, Wang HS, et al. 2013. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. J Hazard Mater 261:770–6
  • Menzie CA, Potocki BB, and Santodonato J. 1992. Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–84
  • Molly K, Van de Woestyne M, and Verstraete W. 1993. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39:254–8
  • NRC (National Research Council). 2003. Bioavailability of Contaminants in Soil and Sediment: Processes, Tools and Applications, National Academic Press, Washington, DC, USA
  • Oomen AG, Sips AJAM, Groten JP, et al. 2000. Mobilization of PCBs and Lindan from soil during in vitro digestion and their distribution among bile salt micelles and proteins of human digestive fluid and the soil. Environ Sci Technol 34:297–303
  • Paustenbach DJ. 2000. The practice of exposure assessment: A state of the art review. J Toxicol Environ Health 3:179–291
  • Plumlee GS, Durant JT, Morman SA, et al. 2013. Linking geological and health sciences to assess childhood lead poisoning from artisanal gold mining in Nigeria. Environ Health Perspec 121:744–50
  • Plumlee GS and Morman SA. 2011. Mine wastes and human health. Elements Magazine 7:399–404
  • Pouschat P and Zagury GJ. 2006. In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles. Environ Sci Technol 40:4317–23
  • Pu X, Lee LS, Galinsky RE, et al. 2004. Evaluation of a rat model versus a physiologically based extraction test for assessing phenanthrene bioavailability from soils. Toxicol Sci 79:10–7
  • Puls C, Limbeck A, and Hann S. 2012. Bioaccessibility of palladium and platinum in urban aerosol particulates. Atmos Environ 55:213–9
  • RECORD (REseau COopératif de Recherche sur les Déchets). 2012. Biodisponibilité et bioaccessiblité des polluants dans le cas des sols pollués : État des connaissances et pistes de recherche, RECORD, n°10-0671/1A, Villeurbanne, France
  • Reeves WR, Mcdonald TJ, Bordelon NR, et al. 2001. Impacts of aging on in vivo and in vitro measurements of soil-bound polycyclic aromatic hydrocarbon availability. Environ Sci Technol 35:1637–43
  • Riding MJ, Doick KJ, Martin FL, et al. 2013. Chemical measures of bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application. J Hazard Mater 261:687–700
  • Rodriguez RR, Basta NT, Casteel SW, et al. 1999. An in-vitro gastro-intestinal method to assess bioavailable arsenic in contaminated soils and solid media. Environ Sci Technol 33:642–49
  • Rostami I and Juhasz AL. 2011. Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: A critical review. Crit Rev Environ Sci Technol 41:623–56
  • Rotard W, Christmann W, Knoth W, et al. 1995. Determination of absorption availability of PCDD/PCDF from “Kieselrot” (Red Slag) in the digestive tract-Simulation of the digestion of technogenic soil. UWSF-Z Umweltchem Okotox 7:3–9
  • Ruby MV, Davis A, Schoof R, et al. 1996. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–30
  • Ruby MV and Lowney YW. 2012. Selective soil particle adherence to hands: Implications for understanding oral exposure to soil contaminants. Environ Sci Technol 46:12759–71
  • Ruby MV, Lowney YW, Bunge AL, et al. 2016. Oral bioavailability, bioaccessibility, and dermal absorption of PAHs from soil - State of the science. Environ Sci Technol 50:2151–64
  • Ruby MV, Schoof R, Brattin W, et al. 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697–705
  • Siciliano SD, Laird BD, and Lemieux CL. Polycyclic aromatic hydrocarbons are enriched but bioaccessibility reduced in brownfield soils adhered to human hands. Chemosphere 80:1101–8
  • Srogi K. 2007. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ Chem Lett 5:169–95
  • Stanek EJ, Calabrese EJ, and Zorn M. Soil ingestion distributions for Monte Carlo risk assessment in children. Hum Ecol Risk Assess 7:357–68
  • Tang X, Tang L, Zhu Y, et al. 2006. Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test. Environ Pollut 140:279–85
  • Tilston EL, Gibson GR, and Collins CD. Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH. Environ Sci Technol 45:5301–8
  • Tsuji JS, Benson R, Schoof RA, et al. 2004. Health effect levels for risk assessment of childhood exposure to arsenic. Regul Toxicol Pharmacol 39:99–110
  • Tulve NS, Suggs JC, McCurdy T, et al. 2002. Frequency of Mouthing Behavior in Young Children. J. Expo. Anal Environ Epidemiol 12:259–64
  • U.K.EA (United Kingdom Environment Agency). 2002. In-vitro Methods for the Measurement of the Oral Bioaccessibility of Selected Metals and Metalloids in Soils: A Critical Review, P5-062/TR/01, Environment Agency, Bristol, UK
  • U.K.EA. 2009. Updated Technical Background to the CLEA Model, SC050021/SR3, Environment Agency, Bristol, UK
  • U.K.EA. 2015. Environmental management – guidance: Contaminated land exposure assessment (CLEA) tool. Available at: https://www.gov.uk/government/publications/contaminated-land-exposure-assessment-clea-tool
  • U.S.EPA (United States Environmental Protection Agency). 1994. Integrated Risk Information System. Benzo(a)pyrene – CASRN 50-32-8. Available at: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=136
  • U.S.EPA. 2008. Child-Specific exposure factors handbook. EPA/600/R-06/096F. National Center for Environmental Assessment, Office of Research and Development, Washington, DC, USA
  • U.S.EPA. 2011a. Exposure factors handbook: 2011 edition. EPA/600/R-090/052F. National Center for Environmental Assessment, Office of Research and Development, Washington, DC, USA
  • U.S.EPA. 2011b. Attachment E - Selection of Soil Ingestion Rates. Washington, DC, USA. Available at: http://www.epa.gov/region1/ge/thesite/restofriver/reports/final_hhra/comments/generalelectric/AttachE.pdf
  • U.S.EPA. 2016. Soil Bioavailability at Superfund Sites: Guidance. Available at: https://www.epa.gov/superfund/soil-bioavailability-superfund-sites-guidance
  • von Lindern I, Spalinger S, Stifelman ML, et al. 2016. Estimating children's soil/dust ingestion rates through retrospective analyses of blood lead biomonitoring from the Bunker Hill superfund site in Idaho. Environ Health Perspec, article in press, DOI: 10.1289/ehp.1510144
  • Wang L, Lu X, Ren C, et al. 2014. Contamination assessment and health risk of heavy metals in dust from Changqing industrial park of Baoji, NW China. Environ Earth Sci 71:2095–104
  • Wang W, Huang M, Wu F, et al. 2013. Risk assessment of bioaccessible organochlorine pesticides exposure via indoor and outdoor dust. Atmos Environ 77:525–33
  • Wilson R, Jones-Otazo H, Petrovic S, et al. 2013. Revisiting dust and soil ingestion rates based on hand-to-mouth ransfer. Hum Ecol Risk Assess 19:158–88
  • Wittsiepe J, Schrey P, Hack A, et al. 2001. Comparison of different digestive tract models for estimating bioaccessibility of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) from red slag ‘Kieselrot’. Int J Hyg Environ Health 203:263–73
  • Xue J, Zartarian V, Moya J, et al. 2007. A Meta-analysis of children's and-to-mouth frequency data for estimating nondietary ingestion exposure. Risk Anal 27:411–20
  • Zahran S, Laidlaw MAS, McElmurry SP, et al. 2013. Linking source and effect: Resuspended soil lead, air lead, and children's blood lead levels in Detroit, Michigan. Environ Sci Technol 47:2839–45
  • Zhang J, Yang J, Wang R, et al. 2013. Effects of pollution sources and soil properties on distribution of polycyclic aromatic hydrocarbons and risk assessment. Sci Total Environ 463–464:1–10
  • Zhang Y, Pignatello JJ, Tao S, et al. 2015a. Bioaccessibility of PAHs in fuel soot assessed by an in vitro digestive model with absorptive sink: Effect of food ingestion. Environ Sci Technol 49:14641–8
  • Zhang Y, Pignatello JJ, Tao S, et al. 2015b. Bioaccessibility of PAHs in fuel soot assessed by an in vitro digestive model: Effect of including an absorptive sink. Environ Sci Technol 49:3905–12
  • Zhu Y, Yang X, Yuan Q, et al. 2014. Airborne particulate polycyclic aromatic hydrocarbon (PAH) Pollution in a background site in the North China Plain: Concentration, size distribution, toxicity and sources. Sci Total Environ 466–467:357–68

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.