157
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Copper flotation waste from KGHM as potential sorbent for heavy metal removal from aqueous solutions

, &
Pages 1610-1628 | Received 04 Apr 2017, Accepted 16 May 2017, Published online: 25 Jul 2017

References

  • Adriano DC. 2001. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. Springer, New York
  • Al-Degs Y, El-Barghouthi MI, Issa AA, et al. 2006. Sorption of Zn(II), Pb(II) and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Res 40:2645–58
  • Alp I, Deveci H, and Süngün H. 2008. Utilization of flotation wastes of copper slag as raw material in cement production. J Hazard Mater 159(2–3):390–5
  • Ayres DM, Davis AP, and Gietka PM. 1994. Removing Heavy Metals from Wastewater. Engineering Research Center Report, University of Maryland
  • Bajda T. 2001. Adsorption of chromium compounds on various mineral raw materials. In: Weber, J., Jamroz, E., Drozd, J., Karczewska, A. (Eds.), Biogeochemical Processes and Cycling of Elements in the Environment, 15th International Symposium on Environmental Biogeochemistry, Wroclaw, Poland, September 11–15.09.2001, Polish Society of Humic Substances,Wroclaw, Poland, 2001, pp 281–2
  • Bajda T, Franus W, Manecki A, et al. 2004. Sorption of heavy metals on natural zeolite and smectite-zeolite shale from the Polish Flysch Carpathians. Pol J Environ Stud 13(III):7–10
  • Belova DA, Lakshtanov LZ, Carneiro JF, and Stipp SLS. 2014. Nickel adsorption on chalk and calcite. J Contam Hydrol 170:1–9
  • Blowes DW and Jambor JL. 1990. The pore-water chemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec. Appl Geochem 5:327–46
  • Bożęcka A, Bożęcki P, and Sanak-Rydlewska S. 2016. Removal of Pb(II) and Cd(II) ions from aqueous solutions with selected organic wastes. Physicochem Probl Mi 52(1):380–96
  • Butra J, Dębkowski R, Grotowski A, and Mizera A. 1998. Technologie zagospodarowania odpadów flotacyjnych z przeróbki rud miedzi. Materiały IV Konf. Problemy zagospodarowania odpadów mineralnych. Wisła, 8–10 czerwca 1998
  • Chmielewski AG, Wawszczak D, and Brykała M. 2016. Possibility of uranium and rare metal recovery in the Polish copper mining industry. Hydrometallurgy 159:12–8
  • Chitpong N and Husson SM. 2017. Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Membrane Sci 523:418–29
  • Chowdhury S, Jafar Mazumder MA, Al-Attas O, and Husain T. 2016. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci Total Environ 569–570:476–88
  • Cieszkowski H, Butra J, and Dębkowski R. 1996. Kierunki i możliwości zagospodarowania odpadów flotacji w technologiach górniczych kopalń LGOM. Materiały I Międzynar. Konf. Zagospodarowanie i utylizacja odpadów górniczych i hutniczych. Polanica Zdrój, 16–18 października 1995. Wyd.: KGHM Polska Miedź S.A., CBPM Cuprum Sp. z o.o, Instytut Metali Nieżelaznych, Wrocław, marzec1996, 173–1181
  • Doğan M, Turhan Y, Alkan M, et al. 2008. Functionalized sepiolite for heavy metal ions adsorption. Desalination 230(1–3):248–68
  • Dold B and Fontboté L. 2002. A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu–Au deposits from the Punta del Cobre belt, northern Chile. Chem Geol 189:135–63
  • Downorowicz S. 1996. Lityfikacja urobku poflotacyjnego w modelu gospodarki bezodpadowej górnictwa miedziowego. Materiały I Międzynar. Konf. Zagospodarowanie I utylizacja odpadów górniczych i hutniczych. Polanica Zdrój, 16–18 października 1995. Wyd.: KGHM Polska Miedź S.A., CBPM Cuprum Sp. z o.o, Instytut Metali Nieżelaznych, Wrocław, marzec1996, 329–34
  • Dubinin MM, Zaverina ED, and Radushkevich LV. 1949. Sorption and structure of active carbons. In: Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii 21:1351–62
  • Duczmal-Czernikiewicz A, Diatta B, and Rachwał L. 2012. Mineralogia odpadów po flotacji rud miedzi oraz możliwość ich rolniczego zastosowania. Biuletyn Państwowego Instytutu Geologicznego 448:371–80
  • Fabijański J, Gastol J, Radecki A, et al. 1970. Wpływ stosowania różnych odpadów kopalnianych i przemysłowych na właściwości i produkcyjność gleb lekkich. Roczniki Gleboznawcze 21(2):297–319
  • Feng D, Aldrich C, and Tan H. 2000. Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner Eng 13(6):623–42
  • Freundlich HMF. 1906. Uber die adsorption in losungen. Z Phys Chem 57A:385–470
  • Fu F and Wang Q. 2011. Removal of heavy metal ions from wastewaters: A review. J Environ Manage 92:407–18
  • Gadsden JA. 1975. Infrared Spectra of Minerals and Related Inorganic Compounds. Butterworths, London
  • Garcia-Sanchez A and Alvarez-Ayuso E. 2002. Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters. Miner Eng 15:539–47
  • Garg K, Gupta R, Kumar R, and Gupta RK. 2004. Adsorption of chromium from aqueous solution on treated sawdust. Bioresour Technol 92:79–81
  • Hashim MA, Mukhopadhyay S, Sahu JN, and Sengupta B. 2011. Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92:2355–88
  • Helios-Rybicka E and Wójcik R. 2012. Competitive sorption/desorption of Zn, Cd, Pb, Ni, Cu, and Cr by clay-bearing mining wastes. Appl Clay Sci 65–66:6–13
  • Ho YS and McKay GA. 1998. Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Proc Saf Environ Protect 76B:332–40
  • Hua M, Zhang S, Pan B, et al. 2012. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J Hazard Mater 211:317–31
  • Huang J, Wu Z, Chen L, and Sun Y. 2015. The sorption of Cd(II) and U(VI) on sepiolite: A combined experimental and modeling studies. J Mol Liq 209:706–12
  • Hubicki Z and Kołodyńska D. 2012. Selective removal of heavy metal ions from waters and waste waters using ion exchange methods. In: Kilislioğlu, A. (ed.), Ion Exchange Technologies. InTech. doi: https://doi.org/10.5772/51040
  • Ilyas S, Chi R, and Lee J. 2013. Fungal bioleaching of metals from mine tailing. Mineral Process Extract Metallur Rev Int J 34(3):185–94
  • Immamuglu M and Tekir O. 2008. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 228:108–13
  • Iskander AL, Khald EM, and Sheta AS. 2011. Zinc and manganese sorption behavior by natural zeolite and bentonite. Ann Agric Sci 56:43–8
  • Jones GC and Jackson B. 1993. Infrared Transmission Spectra of Carbonate Minerals. Chapman & Hall, London
  • Jordanov SH, Maletić M, Dimitrov A, et al. 2007. Waste waters from copper ores mining/flotation in ‘Bučim’ mine: characterization and remediation. Desalination 213:65–71
  • Kadirvelu K, Thamaraiselvi K, and Namasivayam C. 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour Technol 76:63–5
  • Kordas L and Tasz W. 2012. Plonowanie oraz zawartość makroelementów w wybranych roślinach energetycznych uprawianych na zmodyfikowanych dodatkiem materiałów mineralnych i organicznych odpadach z flotacji rud miedzi. Fragm Agron 29(3):103–13
  • Kotarska I. 2012. Odpady wydobywcze z górnictwa miedzi w Polsce – bilans, stan zagospodarowania i aspekty środowiskowe. Cuprum 65:45–63
  • Król M, Matras E, and Mozgawa W. 2016. Sorption of Cd2+ ions onto zeolite synthesized from perlite waste. Int J Environ Sci Technol 13:2697–704
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–403
  • Li Q, Zhai J, Zhang W, et al. 2007. Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J Hazard Mater 141(1):163–7
  • Li Q, Zhai J, Zhang W, et al. 2008. A study on adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by peanut husk. Bull Chem Soc Ethiop 22(1):19–26
  • Lutandula MS and Maloba B. 2013. Recovery of cobalt and copper through reprocessing of tailings from flotation of oxidised ores. J Environ Chem Eng 1(4):1085–90
  • Łuszczkiewicz A. 2000. Koncepcje wykorzystania odpadów flotacyjnych z przeróbki rud miedzi w regionie legnicko-głogowskim. Inżynieria Mineralna 1(1):25–35
  • Madejova J. 2003. FTIR techniques in clay mineral studies – A review. Vib Spectrosc 31:1–10
  • Matusik J. 2014. Arsenate, orthophosphate, sulfate and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chem Eng J 246:244–53
  • Maziarz P and Matusik J. 2016. The effect of acid activation and calcination of halloysite on the efficiency and selectivity of Pb(II), Cd(II), Zn(II) and As(V) uptake. Clay Miner 51(3):385–94
  • Merrikhpour H and Jalali M. 2012. Waste calcite sludge as an adsorbent for the removal of cadmium, copper, lead, and zinc from aqueous solutions. Clean Technol Environ 14:845–55
  • Mikoda B, Gruszecka-Kosowska A, and Klimek A. 2016a. The evaluation of copper flotation waste as an adsorbent of Cu(II), Cr(III) and Pb(II) from aqueous solutions. International Conference on the Sustainable Energy and Environment Development, AGH UST in Krakow, May 17th–19th, 2016
  • Mikoda B, Gruszecka-Kosowska A, and Klimek A. 2016b. Competitive sorption of Cd(II), Cr(III), Cu(II) and Pb(II) by copper flotation waste from KGHM Polska Miedź. 9th GeoSymposium of Young Researchers Silesia 2016, Kroczyce, 31.08–02.09.2016
  • Mohammadi M, Ghaemi A, Torab-Mostaedi M, et al. 2015. Adsorption of cadmium (II) and nickel (II) on dolomite powder. Desalin Water Treat 53(1):149–57
  • Mozgawa W and Bajda T. 2005. Spectroscopic study of heavy metals sorption on clinoptilolite. Phys Chem Miner 31(10):706–713.
  • Namasivayam K and Kumuthu M. 1998. Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresource Technol 64:77–9
  • Qdais HA and Moussa H. 2004. Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164(2):105–10
  • Pehlivan E, Müjdat Özkan A, Dinc S, and Parlayic S. 2009. Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J Hazard Mater 167:1044–9
  • Povarennykh AS. 1978. The use of infrared spectra for the determination of minerals. Am Miner 63:956–9
  • Rajczyk K, Jarocka A, and Płachetka K. 2008. Badania przydatności odpadów powstających w procesie flotacji rud miedzi w KGHM Polska Miedź S.A. do produkcji spoiw hydraulicznych. Prace IMMB, Opole
  • Redwan M, Rammlmair D, and Meima JA. 2012. Application of mineral liberation analysis in studying micro-sedimentological structures within sulfide mine tailings and their effect on hardpan formation. Sci Total Environ 414:480–93
  • Rosik-Dulewska C. 2015. Podstawy Gospodarki Odpadami. Wydawnictwo Naukowe PWN, Warszawa
  • Rösler HJ and Lange H. 1972. Geochemical Tables. VEB Deutscher Verlag für Grundstoffindustrie
  • Rzepa G, Bajda T, and Ratajczak T. 2009. Utilization of bog iron ores as sorbents of heavy metals. J Hazard Mater 162:1007–13
  • Sari A and Tuzen M. 2009. Kinetic and equilibrium studies of Pb(II) and Cd(II) removal from aqueous solution onto colemanite ore waste. Desalination 249:260–6
  • Sdiri A, Higashi T, Jamoussi F, and Bouaziz S. 2012. Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J Environ Manage 93:245–53
  • Sharaf G and Hassan H. 2014. Removal of copper ions from aqueous solution using silica derived from rice straw: comparison with activated charcoal. Int J Environ Sci Technol 11:1581–90
  • Shirvani M, Kalbasi M, Shariatmadari H, et al. 2006. Sorption–desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: Isotherm hysteresis. Chemosphere 65:2178–84
  • Speczik S, Grabowski C, Mizera A, and Grotowski A. 2003. Stan aktualny i perspektywy gospodarki odpadami stałymi w KGHM Polska Miedź S.A. pp. 155–177. Warsztaty z cyklu Zagrożenia naturalne w górnictwie
  • Srivastava P, Singh B, and Angove M. 2005. Competitive adsorption behavior of heavy metals on kaolinite. J Colloid Interf Sci 290:28–38
  • Yang S, Ren X, Zhao G, et al. 2015. Competitive sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: Batch, modeling, EPR and XAS studies. Geochim Cosmochim Acta 166:129–45

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.