162
Views
5
CrossRef citations to date
0
Altmetric
Special Collection on the Microbiota and Risk

Mechanistic modeling of salmonellosis: Update and future directions

, , &
Pages 1830-1856 | Received 21 Apr 2017, Accepted 14 Jul 2017, Published online: 18 Sep 2017

References

  • Aderem A, Adkins JN, Ansong C, et al. 2011. A systems biology approach to infectious disease research: Innovating the pathogen-host research paradigm. mBio 2(1):e00325–10
  • Ahmer BM, van Reeuwijk J, Timmers CD, et al. 1998. Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J Bacteriol 180(5):1185–93
  • Avendaño-Pérez G and Pin C. 2013. Loss of culturability of Salmonella enterica subsp. enterica serovar Typhimurium upon cell-cell contact with human fecal bacteria. Appl Environ Microbiol 79(10):3257–63
  • Bäckhed F, Ley RE, Sonnenburg JL, et al. 2005. Host-bacterial mutualism in the human intestine. Science 307(5717):1915–20
  • Behnsen J, Perez-Lopez A, Nuccio SP, et al. 2015. Exploiting host immunity: The Salmonella paradigm. Trends Immunol 36(2):112–20
  • Bell BP, Goldoft M, Griffin PM, et al. 1994. A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA, J Am Med Assoc 272:1349–53
  • Berg HC. 2005. Swarming motility: It better be wet. Curr Biol 15(15):R599–600
  • Bieber D, Ramer SW, Wu CY, et al. 1998. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280:2114–18
  • Blaser MJ. 2014. The microbiome revolution. J Clin Invest 124(10):4162–65
  • Blondel CJ, Yang HJ, Castro B, et al. 2010. Contribution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS ONE 5:e11724
  • Bogen KT. 2016. Linear-no-threshold default assumptions for noncancer and nongenotoxic cancer risks: A mathematical and biological critique. Risk Anal 36:589–604
  • Bogomolnaya LM, Aldrich L, Ragoza Y, et al. 2014. Identification of novel factors involved in modulating motility of Salmonella enterica serotype typhimurium. PLoS ONE 9(11):e111513
  • Bohnhoff M, Drake BL, and Miller CP. 1954. Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc Soc Exp Biol Med 86:132–7
  • Boué G, Guillou S, Antignac JP, et al. 2015. Public health risk-benefit assessment associated with food consumption—A review. Eur J Food Res Rev 5(1):32
  • Brugiroux S, Beutler M, Pfann C, et al. 2016. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol 2:16215
  • Buchanan RL, Havelaar AH, Smith MA, et al. 2009. The key events dose-response framework: Its potential for application to foodborne pathogenic microorganisms. Crit Rev Food Sci Nutr 49(8):718–28
  • Buffie CG and Pamer EG. 2013. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13(11):790–801
  • Buffie CG, Bucci V, Stein RR, et al. 2015. Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile. Nature. 517(7533):205–8
  • Butler MT, Wang Q, and Harshey RM. 2010. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci USA 107:3776–81
  • Caballero S and Pamer EG. 2015. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu Rev Immunol 33:227–56
  • Centers for Disease Control and Prevention (CDC). 2000. Salmonella Surveillance: Annual Tabulation Summary, 1999. US Department of Health and Human Services, Atlanta, GA, USA
  • Centers for Disease Control and Prevention (CDC). 2016. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet Surveillance Report for 2014 (Final Report). US Department of Health and Human Services, Atlanta, Georgia, Atlanta, Georgia. Available at https://www.cdc.gov/foodnet/pdfs/2014-foodnet-surveillance-report.pdf
  • Cilfone NA, Kirschner DE, and Linderman JJ. 2015. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems. Cell and Mol Bioeng 8:119–36
  • Cornforth DM, Matthews A, Brown SP, et al. 2015. Bacterial cooperation causes systematic errors in pathogen risk assessment due to the failure of the independent action hypothesis. PLoS Pathog 11(4):e1004775
  • Coleman ME and Marks H. 1998. Topics in dose-response modeling. J. Food Protect 61(11):1550–59
  • Coleman ME and Marks HM. 1999. Qualitative and quantitative risk assessment. Food Control 10(4–5):289–97
  • Coleman ME and Marks HM. 2000. Mechanistic modelling of salmonellosis. Quant Microbiol 2:227–47
  • Coleman ME, Marks HM, Golden NJ, et al. 2004. Discerning strain effects in microbial dose-response data. J Toxicol Environ Health, Part A 67(8–10):667–85
  • Cox LA Jr. 1995. An exact analysis of the multistage model explaining dose-response concavity. Risk Anal 15(3):359–68
  • Crump KS. 2016. Bogen's critique of linear-no-threshold default assumptions. Risk Anal online, record of 13 December. DOI:10.1111/risa.12748
  • D'Aoust JY. 1997. Salmonella species. In: Doyle MP, Beuchat LR, Montville TJ (eds), Food Microbiology: Fundamentals and Frontiers 2 nd ed, pp. 129–158. American Society for Microbiology Press, Washington, DC, USA
  • Darwin KH and Miller VL. 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12(3):405–28
  • Dicksved J, Ellström P, Engstrand L, et al. 2014. Susceptibility to Campylobacter infection is associated with the species composition of the human fecal microbiota. mBio 5(5):e01212–14
  • Dietert RR. 2011. Fractal immunology and immune patterning: Potential tools for immune protection and optimization. J Immunotoxicol 8(2):101–10
  • Dietert RR. 2016. The Human Superorganism: How the Microbiome is Revolutionizing the Pursuit of a Health Life. Dutton, New York, NY, USA
  • Dietert RR. 2017. Safety and risk assessment for the human superorganism.
  • Dietert RR and Silbergeld EK. 2015. Biomarkers for the 21st century: Listening to the microbiome. Toxicol Sci 144(2):208–16
  • Dostal A, Gagnon M, Chassard C, et al. 2014. Salmonella adhesion, invasion and cellular immune responses are differentially affected by iron concentrations in a combined in vitro gut fermentation-cell model. PLoS One. 9(3):e93549
  • Dreau D, Sonnenfeld G, Fowler N, et al. 1999. Effects of social conflict on immune responses and E. coli growth within closed chambers in mice. Physiol Behav 67(1):133–40
  • Eisenstein BI, Schaechter M, and Young V. 2013. The normal microbiota. In: Engleberg NC, DiRita V, Fermody TS (eds), Schaechter's Mechanisms of Microbial Disease 5th ed, pp. 11–17. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, PA, USA
  • Eloe-Fadrosh EA and Rasko DA. 2013. The human microbiome: From symbiosis to pathogenesis. Ann Rev Med 64:145–63
  • Endelstein-Keshet L. 1988. Mathematical Models in Biology, Classics in Applied Mathematics 46. Republished by Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
  • Endt K, Stecher B, Chaffron S, et al. 2010. The Microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 6(9):e1001097
  • Engleberg NC, DiRita V, Fermody TS (eds). 2013. Schaechter's Mechanisms of Microbial Disease. Wolters Kluwer | Lippincott Williams and Wilkins, New York, NY, USA
  • Fàbrega A andVila J. 2013. Salmonella enterica serovar Typhimurium skills to succeed in the host: Virulence and regulation. Clin Microbiol Rev 26(2):308–41
  • Food and Agriculture Organization/World Health Organization. (FAO/WHO). 2002. Risk assessments of Salmonella in eggs and broiler chickens. Microbiological Risk Assessment Series 2 Washington, DC, USA
  • Freter R. 1992. Factors affecting the microecology of the gut. In: Fuller   (ed.), Probiotics: The Scientific Basis, pp. 111–145. Chapman and Hall, New York, NY, USA
  • Furze RC and Rankin SM. 2008. Neutrophil mobilization and clearance in the bone marrow. Immunol 125(3):281–8
  • Gahan CGM and Hill C. 2014. Listeria monocytogenes: Survival and adaptation in the gastrointestinal tract. Front Cell Infect Microbiol 4:9
  • Galan JE and Sansonetti PJ. 1996. Molecular and cellular bases of Salmonella and Shigella interactions with host cells. In: Neidhardt   (ed), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology 2 nd ed, pp. 2757–63. American Society for Microbiology Press, Washington DC, USA
  • Gart EV, Suchodolski JS, Welsh TH Jr, et al. 2016. Salmonella typhimurium and multidirectional communication in the gut. Front Microbiol 7:1827
  • Gerba CP, Rose JB, and Haas CN. 1996. Sensitive populations: Who is at greatest risk? Int J Food Microbiol 30:113–23
  • Giaouris E, Chorianopoulos N, Skandamis P, et al. 2012. Attachment and Biofilm Formation by Salmonella in Food Processing Environments, Salmonella – A Dangerous Foodborne Pathogen DR Barakat, S M Mahmoud (eds.), InTech, Available at http://www.intechopen.com/books/salmonella-a-dangerous-foodborne-pathogen/attachment-and-biofilmformation-by-salmonella-in-food-processing-environments
  • Gordon JI. 2012. Honor thy gut symbionts redux. Science 336(6086):1251–3
  • Grossi C and Lydyard P. 1985. Cells involved in the immune response. In: Roitt Brostoff, Male (eds), Immunology, pp 2.1–2.16. CV Mosby Company, St. Louis, MO, USA
  • Guess HA and Hoel DG. 1977. The effect of dose on cancer latency period. J Environ Pathol Toxicol 1:279–86
  • Günther C, Josenhans C, and Wehkamp J. 2016. Crosstalk between microbiota, pathogens and the innate immune responses. Int J Med Microbiol 306(5):257–65
  • Haas CN. 1983. Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. Am J Epidemiol 118:573–82
  • Haas CN. 2015. Microbial dose response modeling: Past, present, and future. Environ Sci Technol 49:1245–59
  • Harshey RM and Partridge JD. 2015. Shelter in a swarm. J Mol Biol 427(23):3683–94
  • Health Canada. 2011. Policy on Listeria monocytogenes in Ready-to-Eat Foods. Available at http://www.hc-sc.gc.ca/fn-an/legislation/pol/policy_listeria_monocytogenes_2011-eng.php
  • Henning SJ and von Furstenberg RJ. 2016. GI stem cells – new insights into roles in physiology and pathophysiology. J Physiol 594(17):4769–79
  • Holcomb DL, Smith MA, Ware GO, et al. 1999. Comparison of six dose-response models for use with food-borne pathogens. Risk Anal 19(6):1091–100
  • Isaac S, Scher JU, Djukovic A, et al. 2017. Short- and long-term effects of oral vancomycin on the human intestinal microbiota. J Antimicrob Chemother 72(1):128–36
  • Jay JM. 2009. Natural microbial ecosystems and their progression in fresh foods. In: Jaykus LA, Wang HH, and Schlesinger LS (eds), Food-Borne Microbes: Shaping the Host Ecosystem. pp 41–62. American Society for Microbiology Press, Washington, DC, USA
  • Jones BD. 1997. Host responses to pathogenic Salmonella infection. Genes Dev 11:679–87
  • June RC, Ferguson WW, and Worfel MT. 1953. Experiments in feeding adult volunteers with Escherichia coli 55, B5, a coliform organism associated with infant diarrhea. Am J Hyg 57:222–36
  • Kaiser P, Diard M, Stecher B, et al. 2012. The streptomycin mouse model for Salmonella diarrhea: Functional analysis of the microbiota, the pathogen's virulence factors, and the host's mucosal immune response. Immunol Rev 245:56–83
  • Kamada N, Chen GY, Inohara N, et al. 2013. Control of pathogens and pathobionts by the gut microbiota. Nat Immuno 14(7):685–90
  • Khan CMA. 2014. The Dynamic Interactions between Salmonella and the microbiota, within the challenging niche of the gastrointestinal tract. Int Sch Res Notices 846049
  • Kim W and Surette MG. 2004. Metabolic differentiation in actively swarming Salmonella. Mol Microbiol 54(3):702–14
  • Kinnebrew MA and Pamer EG. 2012. Innate immune signaling in defense against intestinal microbes. Immunol Rev 245:113–31
  • Kirschner DE and Linderman JJ. 2009. Mathematical and computational approaches can complement experimental studies of host-pathogen interactions. Cell Microbiol 11(4):531–9
  • Kreft JU. 2009. Mathematical modelling of microbial ecology: Spatial dynamics of interactions in biofilms and guts. In: Jaykus Wang, and Schlesinger   (eds), Food-Borne Microbes: Shaping the Host Ecosystem, pp 347–78. American Society for Microbiology Press, Washington, DC, USA
  • Krych L1, Hansen CH, Hansen AK, et al. 2013. Quantitatively different, yet qualitatively alike: A meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS ONE 8(5):e62578
  • Lagier JC, Million M, Hugon P, et al. 2012. Human gut microbiota: Repertoire and variations. Front Cell Infect Microbiol 2:136
  • Laughlin RC, Knodler LA, Barhoumi R, et al. 2014. Spatial segregation of virulence gene expression during acute enteric infection with Salmonella enterica serovar Typhimurium. MBio 5:e00946–00913
  • Lawley TD and Walker AW. 2013. Intestinal colonization resistance. Immunol 138(1):1–11
  • Lei YM, Nair L, Alegre ML. 2015. The interplay between the intestinal microbiota and the immune system. Clini Res Hepatol Gastroenterol 39(1):9–19
  • Levinson W. 2012. Normal flora. In: Review of Medical Microbiology and Immunology, pp. 26–30, McGraw Hill Medical, New York, NY, USA
  • Littman DR and Pamer EG. 2011. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10(4):311–23
  • Lockman HA and Curtiss R. 1990. Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect Immun 58:137–43
  • Mackie RI, Sghir A, and Gaskins HR. 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69(S):1035S–45S
  • Magnuson BA, Davis M, Hubele S, et al. 2000. Ruminant gastrointestinal cell proliferation and clearance of Escherichia coli O157:H7. Infect Immun 68(7):3808–14
  • Magnússon SH, Gunnlaugsdóttir H, van Loveren H, et al. 2012. State of the art in benefit–risk analysis: Food microbiology. Food Chem Toxicol 50(1):33–9
  • Malys MK, Campbell L, and Malys N. 2015. Symbiotic and antibiotic interactions between gut commensal microbiota and host immune system. Medicina 51(2):69–75
  • Marks HM, Coleman ME, Lin CTJ, et al. 1998. Topics in microbial risk assessment: Dynamic flow tree process. Risk Anal 18(3):309–28
  • Marks HM and Coleman ME. 2017. Scientific data and theories for salmonellosis dose-response assessment.
  • Marino S, Linderman JJ, and Kirschner DE. 2011. A multifaceted approach to modeling the immune response in tuberculosis. Wiley Interdiscip Rev Syst Biol Med 3(4):479–89
  • Marino S, Gideon HP, Gong C, et al. 2016. Computational and empirical studies predict Mycobacterium tuberculosis-specific T cells as a biomarker for infection outcome. PLoS Comput Biol 12(4):e1004804
  • Masanta WO, Heimesaat MM, Bereswill S, et al. 2013. Modification of intestinal microbiota and its consequences for innate immune response in the pathogenesis of campylobacteriosis. Clin Dev Immunol 2013:526860
  • McClellan G, Coleman P, Crary D, et al. 2017. Human Dose-Response Data for Francisella tularensis and a Dose and Time-Dependent Mathematical Model of Early-Phase Fever Associated with Tularemia after Inhalation Exposure. Submitted to Risk Analysis.
  • McCullough NB and Eisele CW. 1951a. Experimental human salmonellosis. I. Pathogenicity of strains of Salmonella meleagridis and Salmonella anatum obtained from spray-dried whole egg. J Infect Dis 88:278–89
  • McCullough NB and Eisele CW. 1951b. Experimental human salmonellosis. II. Immunity studies following experimental illness with Salmonella meleagridis and Salmonella anatum. J Immunol 66:595–608
  • McCullough NB and Eisele CW. 1951c. Experimental human salmonellosis. III. Pathogenicity of strains of Salmonella newport, Salmonella derby, and Salmonella bareilly obtained from spray-dried whole egg. J Infect Dis 89:209–13
  • McCullough NB and Eisele CW. 1951d. Experimental human salmonellosis. IV. Pathogenicity of strains of Salmonella pullorum obtained from spray-dried whole egg. J Infect Dis 89:259–65
  • McSorley SJ. 2014. Immunity to intestinal pathogens: Lessons learned from Salmonella. Immunological reviews 260(1):168–82
  • Miller MB and Bassler BL. 2001. Quorum sensing in bacteria. Ann Rev in Microbiol 55(1):165–99
  • Miller CP, Bohnhoff M, and Drake BL. 1954. The effect of antibiotic therapy on susceptibility to an experimental enteric infection. Trans Assoc Am Physicians 67:156–61
  • Naeem AK. 2014. Detection of swarming and biofilm formation ability of Salmonella typhimurium isolated from landfills waste. Curr Res Microbiol Biotechnol 2(4):444–9
  • Neish AS. 2009. Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80
  • Neish AS. 2014. Mucosal immunity and the microbiome. Ann Am Thorac Soc. 11(Suppl 1):S28–S32
  • Nguyen TLA, Vieira-Silva S, Liston A, et al. 2015. How informative is the mouse for human gut microbiota research? Dis Models & Mech 8(1):1–16
  • Nilsen V and Wyller J. 2016a. QMRA for drinking water: 1. Revisiting the mathematical structure of single-hit dose-response models. Risk Anal 36:145–62
  • Nilsen V and Wyller J. 2016b. QMRA for drinking water: 2. The effect of pathogen clustering in single-hit dose-response models. Risk Anal 36:163–81
  • Ostaff MJ, Stange EF, and Wehkamp J. 2013. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Molecular Medicine 5(10):1465–83
  • Pai CH, Kelly JK, and Meyers GL. 1986. Experimental infection of infant rabbits with verotoxin-producing Escherichia coli. Infect Immun 51(1):16–23
  • Palmer AD and Slauch JM. 2017. Mechanisms of Salmonella pathogenesis in animal models.
  • Pamer EG. 2014. Fecal microbiota transplantation: Effectiveness, complexities, and lingering concerns. Mucosal Immunol 7(2):210–4
  • Partridge JD and Harshey RM. 2013a. More than motility: Salmonella flagella contribute to overriding friction and facilitating colony hydration during swarming. J Bacteriol 195(5):919–29
  • Partridge JD and Harshey RM. 2013b. Swarming: Flexible roaming plans. J Bacteriol 195(5):909–18
  • Paustenbauch DJ. 1995. The practice of health risk assessment in the United States (1975–1995): How the US and other countries can benefit from that experience. Hum Ecol Risk Assess 1(1):29–79
  • Pérez-Cobas AE, Artacho A, Knecht H, et al. 2013. Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS One 8(11):e80201
  • Pérez-Cobas AE, Moya A, Gosalbes MJ, et al. 2015. Colonization resistance of the gut microbiota against Clostridium difficile. Antibiotics 4(3):337–57
  • Pessoa D, Souto-Maior C, Gjini E, et al. 2014. Unveiling time in dose-response models to infer host susceptibility to pathogens. PLoS Comput Biol 10(8):e1003773
  • Pham TAN and Lawley TD. 2014. Emerging insights on intestinal dysbiosis during bacterial infections. Curr Opin in Microbiol 17(100):67–74
  • Pienaar E, Matern WM, Linderman JJ, et al. 2016. Multiscale model of Mycobacterium tuberculosis infection maps metabolite and gene perturbations to granuloma sterilization predictions. Infect Immun 84(5):1650–69
  • Pouillot R, Klontz KC, and Chen Y. 2016. Infectious dose of Listeria monocytogenes in outbreak linked to ice cream, United States, 2015. Emerg Infect Dis 22(12):2113–19
  • Pricope-Ciolacu L, Nicolau AI, et al. 2013. The effect of milk components and storage conditions on the virulence of Listeria monocytogenes as determined by a Caco-2 cell assay. Int J Food Microbiol 166(1):59–64
  • Rubin LG. 1987. Bacterial colonization and infection resulting from multiplication of a single organism. Rev Infect Dis 19(3):488–93
  • Salyers AA and Whitt DD. 1994. Salmonella species. In Bacterial Pathogenesis: A Molecular Approach 1st ed, pp. 381–397. American Society for Microbiology Press, Washington, DC, USA
  • Santos RL. 2014. Pathobiology of Salmonella, intestinal microbiota, and the host innate immune response. Front Immunol 26(5):252
  • Sassone-Corsi M and Raffatellu R. 2015. No vacancy: How beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194(9):4081–87
  • Savage DC. 1989. The normal human microflora-composition. In: Grubb Midtvedt, Norin (eds), The Regulatory and Protective Role of the Normal Microflora, pp. 3–18. M. Stockton Press, NY, USA
  • Simon TW, Simons Jr SS, Preston RJ, et al. 2014. The use of mode of action information in risk assessment: Quantitative key events/dose-response framework for modeling the dose-response for key events. Crit Rev Toxicol 44(Supp 3):17–43
  • Snary EL, Swart AN, and Simons A. 2016. A quantitative microbiological risk assessment for Salmonella in pigs for the European Union. Risk Anal 36:437–49
  • Spees AM, Lopez CA, Kingsbury DD, et al. 2013. Colonization resistance: Battle of the bugs or ménage à trois with the host? PLoS Pathog 9(11):e1003730
  • Stecher B. 2015. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol Spectrum 3(3):MBP-0008–2014
  • Stecher B, Berry D, and Loy A. 2013. Colonization resistance and microbial ecophysiology: Using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev 37(5):793–829
  • Stein RR, Bucci V, Toussaint NC, et al. 2013. Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota. PLoS Comput Biol 9(12):e1003388
  • Surette MG and Bassler BL. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci USA 95(12):7046–50
  • Surette MG and Bassler BL. 1999. Regulation of autoinducer production in Salmonella typhimurium. Mol Microbiol 31(2):585–95
  • Surette MG, Miller MB, and Bassler BL. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA 96(4):639–44
  • Teunis PFM and Havelaar AH. 2000. The Beta Poisson dose-response model is not a single-hit model. Risk Anal 20(4):513–20
  • Teunis PFM, Nagelkerke NJD, and Haas CN. 1999. Dose response models for infectious gastroenteritis. Risk Anal 19(6):1251–60
  • Teunis PFM, Van der Heijden OG, Van der Giessen JWB, et al. 1996. The dose-response relation in human volunteers for gastro-intestinal pathogens. Report Number 284550002. National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
  • Tribble DR, Baqar S, Scott DA, et al. 2010. Assessment of the duration of protection in Campylobacter jejuni experimental infection in humans. Infection and immunity 78(4):1750–9
  • Turnbaugh PJ, Ley RE, Hamady M, et al. 2007. The human microbiome project. Nature 449(7164):804–10
  • Ubeda C, Taur Y, Jenq RR, et al. 2010. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120(12):4332–41
  • Ubeda C, Bucci V, Caballero S, et al. 2013. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81(3):965–73
  • Van der Waaij D, Vries JMB, and der Wees JECL. 1971. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg 69(3):405–11
  • Van Leeuwen E O'Neill S, Matthews A, et al. 2015. Making pathogens sociable: The emergence of high relatedness through limited host invasibility. ISME J 9(10):2315–23
  • Wick MJ. 2011. Innate immune control of Salmonella enterica Serovar Typhimurium: Mechanisms contributing to combating systemic Salmonella infection. J Innate Immun 3:543–49
  • Wikswo ME1, Kambhampati A, Shioda K, et al. 2015. Outbreaks of acute gastroenteritis transmitted by person-to-person contact, environmental contamination, and unknown modes of transmission–United States, 2009–2013. MMWR Surveill Summ 64(12):1–16
  • Wilson AA, Salyers DD, Whitt ME, et al. 2011. The normal human microbiota. In: Bacterial Pathogenesis: A Molecular Approach, pp 73–97. American Society for Microbiology Press, Washington, DC, USA
  • Wood RM, Egan JR, and Hall IM. 2014. A dose and time response Markov model for the in-host dynamics of infection with intracellular bacteria following inhalation: With application to Francisella tularensis. J R Soc Interface 11(95):20140119
  • Zipperer A, Konnerth MC, Laux C, et al. 2016. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535(7613):511

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.