534
Views
49
CrossRef citations to date
0
Altmetric
Articles

Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil

, , , , , , & show all
Pages 1887-1900 | Received 30 Nov 2017, Accepted 16 Jan 2018, Published online: 13 Feb 2018

References

  • Adriano DC, Wenzel WW, Vangronsveld J, et al. 2004. Role of assisted natural remediation in environmental cleanup. Geoderma 122(2–4):121–42. doi:10.1016/j.geoderma.2004.01.003
  • Agegnehu G, Srivastava AK, and Bird MI. 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl Soil Ecol 119(Supplement C):156–70. doi:10.1016/j.apsoil.2017.06.008
  • Ahmad M, Lee SS, Lim JE, et al. 2014. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95:433–41. doi:10.1016/j.chemosphere.2013.09.077
  • Ashraf MA, Maah MJ, and Yusoff I. 2012. Chemical speciation and potential mobility of heavy metals in the soil of former tin mining catchment. Sci World J 2012(3–4):125608
  • Beesley L, Inneh OS, Norton GJ, et al. 2014. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202. doi:10.1016/j.envpol.2013.11.026
  • Beesley L and Marmiroli M. 2011. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–80. doi:10.1016/j.envpol.2010.10.016
  • Beesley L, Moreno-Jiménez E, Gomez-Eyles J, et al. 2011. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–82. doi:10.1016/j.envpol.2011.07.023
  • Bestawy EE, Helmy S, Hussien H, et al. 2013. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3(1):181–92. doi:10.1007/s13201-012-0071-0
  • Brewer CE, Unger R, Schmidt-Rohr K, et al. 2011. Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res 4(4):312–23. doi:10.1007/s12155-011-9133-7
  • Chen Y, Ji HB, Zhu XF, et al. 2012. Fraction distribution and risk assessment of heavy metals in soils around the gold mine of Detiangou-Qifengcha, Beijing City, China. J Agro-Environ Sci 31(11):2142–51
  • Clemente R and Bernal MP. 2006. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere 64(8):1264–73. doi:10.1016/j.chemosphere.2005.12.058
  • Fellet G, Marchiol L, Vedove GD, et al. 2011. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere 83(9):1262–67. doi:10.1016/j.chemosphere.2011.03.053
  • Fellet G, Marmiroli M, and Marchiol L. 2014. Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci Total Environ:598–608. doi:10.1016/j.scitotenv.2013.08.072
  • Fitamo D, Leta S, Belay G, et al. 2011. Phytoavailability of Heavy metals and metalloids in soils irrigated with wastewater, akaki, ethiopia: A greenhouse study. Soil Sediment Contam Int J 20(7):745–66. doi:10.1080/15320383.2011.609196
  • Fu B, Liu G, Liu Y, et al. 2016. Coal quality characterization and its relationship with geological process of the early permian huainan coal deposits, southern North China. J Geochem Explor 166:33–44. doi:10.1016/j.gexplo.2016.04.002
  • Guala SD, Vega FA, and Covelo EF. 2010. The dynamics of heavy metals in plant–soil interactions. Ecol Model 221(8):1148–52. doi:10.1016/j.ecolmodel.2010.01.003
  • Houba VJG, Lexmond TM, Novozamsky I, et al. 1996. State of the art and future developments in soil analysis for bioavailability assessment. Sci Total Environ 178(1–3):21–8. doi:10.1016/0048-9697(95)04793-X
  • Houben D, Evrard L, and Sonnet P. 2013a. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57(11):196–204. doi:10.1016/j.biombioe.2013.07.019
  • Houben D, Evrard L, and Sonnet P. 2013b. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–7. doi:10.1016/j.chemosphere.2013.03.055
  • Huang XX, Zhu XF, Tang L, et al. 2012. Pollution characteristics and their comparative study of heavy metals in the gold and iron mine soil of the upstream area of Miyun Reservoir, Beijing. Acta Sci Circumstantiae 32(6):1520–8
  • Ippolito JA, Berry CM, Strawn DG, et al. 2017. Biochars reduce mine land soil bioavailable metals. J Environ Qual 46(2):411–9. doi:10.2134/jeq2016.10.0388
  • Jiang PL, Fang FM, Zhang JQ, et al. 2013. Distribution and potential ecological risk assessment of soil heavy metals in reclaimed land in huainan coal mine. Bull Soil Water Conserv 33(6):161–5
  • Jin HP, Choppala GK, Bolan NS, et al. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348(1–2):439–51. doi:10.1007/s11104-011-0948-y
  • Kiran YK, Barkat A, Cui XQ, et al. 2017. Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. J Integr Agric 16(3):725–34. doi:10.1016/S2095-3119(16)61488-0
  • Li H. 2014. Content and distribution of trace elements and polycyclic aromatic hydrocarbons in fly ash from a coal-fired CHP plant. Aerosol Air Qual Res 14(4):1179–88
  • Li H, Chen Y, Cao Y, et al. 2016. Comparative study on the characteristics of ball-milled coal fly ash. J Therm Anal Calorim 124(2):839–46. doi:10.1007/s10973-015-5160-5
  • Li H, Dong X, Silva EBD, et al. 2017. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 178:466–78. doi:10.1016/j.chemosphere.2017.03.072
  • Li H, Liu G, Sun R, et al. 2013. Relationships between trace element abundances and depositional environments of coals from the Zhangji coal mine, Anhui Province, China. Energy Explor Exploitation 31(1):89–107. doi:10.1260/0144-5987.31.1.89
  • Li H, Liu GJ, and Cao Y. 2015. Levels and environmental impact of PAHs and trace element in fly ash from a miscellaneous solid waste by rotary kiln incinerator, China. Nat Hazards 76(2):1–12. doi:10.1007/s11069-014-1520-x
  • Li J and Hu S. 2017. History and future of the coal and coal chemical industry in China. Res, Conserv Recycl 124:13–24. doi:10.1016/j.resconrec.2017.03.006
  • Liang Y, Cao X, Zhao L, et al. 2014. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater. Environ Sci Pollut Res Int 21(6):4665–74. doi:10.1007/s11356-013-2423-1
  • Liang J, Yang Z, Tang L, et al. 2017. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 181(Supplement C):281–8. doi:10.1016/j.chemosphere.2017.04.081
  • Liu J, Chen S, Wang H, et al. 2016. Evolution of China's urban energy consumption structure—a case study in Beijing. Energy Procedia 88:88–93. doi:10.1016/j.egypro.2016.06.029
  • Lu K, Yang X, Gielen G, et al. 2017. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manage 186(Pt 2):285–92. doi:10.1016/j.jenvman.2016.05.068
  • Lu K, Yang X, Shen J, et al. 2014. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–32. doi:10.1016/j.agee.2014.04.010
  • Ma JJ, Zhang SL, Yao H, et al. 2012. Temporal cumulative effects of heavy metal and metalloid elements in covering soil of opencast coal mine reclamation area. J Arid Land Res Environ 26(12):69–74
  • Marques APGC, Rangel AOSS, and Castro PML. 2009. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–54. doi:10.1080/10643380701798272
  • Martín JAR, Arias ML, and Corbí JMG. 2006. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ Pollut 144(3):1001–12. doi:10.1016/j.envpol.2006.01.045
  • Meng Q, Zhang J, Li X, et al. 2017. Soil quality as affected by long-term cattle manure application in solonetzic soils of Songnen Plain. Trans Chin Soc Agric Eng 33(6):84–91
  • Naji A and Sohrabi T. 2015. Distribution and contamination pattern of heavy metals from surface sediments in the southern part of Caspian Sea, Iran. Chem Speciation Bioavailability 27(1):29–43. doi:10.1080/09542299.2015.1023089
  • Olaniran AO, Balgobind A, and Pillay B. 2013. Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14(5):10197–228. doi:10.3390/ijms140510197
  • Ottosen LM, Hansen HK, and Jensen PE. 2009. Relation between pH and desorption of Cu, Cr, Zn, and Pb from industrially polluted soils. Water Air Soil Pollut 201(1–4):295–304. doi:10.1007/s11270-008-9945-z
  • Park JH, Choppala G, Bolan N, et al. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348(1-2):439–51. doi:10.1007/s11104-011-0948-y
  • Peng S. 2017. China's long road to the high-efficiency, clean and low-carbon energy transition. Energy Eng 51–7. doi:10.1007/978-981-10-3102-1_6
  • Prabpai S, Charerntanyarak L, Siri B, et al. 2009. Effects of residues from municipal solid waste landfill on corn yield and heavy metal content. Waste Manage 29(8):2316–20. doi:10.1016/j.wasman.2009.02.009
  • Puga AP, Abreu CA, Melo LCA, et al. 2015. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ Sci Pollut Res Int 22(22):17606–14. doi:10.1007/s11356-015-4977-6
  • Puga AP, Melo LCA, Abreu CAD, et al. 2016. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil Tillage Res 164:25–33. doi:10.1016/j.still.2016.01.008
  • Rauret G, López-Sánchez JF, Sahuquillo A, et al. 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit Jem 1(1):57–61. doi:10.1039/a807854h
  • Shan XY, and Xu SQ. 2011. The analysis and assessment on the pollution condition of heavy metals in the soil around the Qinglong Dachang antimony mining area in Guizhou Province. Journal of Guizhou University (Natural Science) 28(1):132–135. doi:10.3969/j.issn.1000-5269.2011.01.032
  • Soja G, Wimmer B, Rosner F, et al. 2017. Compost and biochar interactions with copper immobilisation in copper-enriched vineyard soils. Appl Geochem 88(part A):40–48. doi:10.1016/j.apgeochem.2017.06.004
  • Sun R, Liu G, Zheng L, et al. 2010a. Characteristics of coal quality and their relationship with coal-forming environment: A case study from the Zhuji exploration area, Huainan coalfield, Anhui, China. Energy 35(1):423–35. doi:10.1016/j.energy.2009.10.009
  • Sun R, Liu G, Zheng L, et al. 2010b. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China. Int J Coal Geol 81(2):81–96. doi:10.1016/j.coal.2009.12.001
  • Tang Z, Chai M, Cheng J, et al. 2017. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicol Environ Saf 138(Supplement C):83–91. doi:10.1016/j.ecoenv.2016.11.003
  • Tlustos P, Szakova J, Korinek K, et al. 2006. The effect of liming on cadmium, lead and zinc uptake reduction by spring wheat grown in contaminated soil. Plant Soil Environ 52(1):16–24
  • Uchimiya M, Lima IM, Klasson KT, et al. 2010. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere 80(8):935–40. doi:10.1016/j.chemosphere.2010.05.020
  • Wang H, He Z, Lu Z, et al. 2012. Genetic linkage of soil carbon pools and microbial functions in subtropical freshwater wetlands in response to experimental warming. Appl Environ Microbiol 78(21):7652–61. doi:10.1128/AEM.01602-12
  • Wang T, Sun H, Ren X, et al. 2017. Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal-contaminated soil. Sci Rep 7(1):12114. doi:10.1038/s41598-017-12503-3
  • Wu PP, Li LJ, Wang JJ, et al. 2017. Effects of application of straw-derived biochar on forms of heavy metals in mining contaminated soil. J Ecol Rural Environ 33(5):453–9
  • Xu W, Lu G, Dang Z, et al. 2013. Uptake and distribution of Cd in sweet maize grown on contaminated soils: A field-scale study. Bioinorg Chem Appl 2013(2013):959764
  • Xu X, Cao X, Zhao L, et al. 2014. Interaction of organic and inorganic fractions of biochar with Pb(II) ion: Further elucidation of mechanisms for Pb(II) removal by biochar. RSC Adv 4(85):44930–7. doi:10.1039/C4RA07303G
  • Yang X, Liu J, McGrouther K, et al. 2016. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23(2):974–84. doi:10.1007/s11356-015-4233-0
  • Yao D, Meng J, Zhang Z, et al. 2010. Heavy metal pollution and potential ecological risk in reclaimed soils in Huainan mining area. J Coal Sci Eng (China) 16(3):316–9. doi:10.1007/s12404-010-0319-y
  • Yao Z, Li J, Xie H, et al. 2012. Review on remediation technologies of soil contaminated by heavy metals. Proced Environ Sci 16(4):722–9. doi:10.1016/j.proenv.2012.10.099
  • Yi Q. 2011. The chemical speciation and influencing factors of heavy metals in qingdao Urban soils. Environ Chem 30(3):652–7
  • Yin D, Wang X, Chen C, et al. 2016. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere 152:196–206. doi:10.1016/j.chemosphere.2016.01.044
  • Yuan J, Xu R, and Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–97. doi:10.1016/j.biortech.2010.11.018
  • Zendelska A. 2015. Possibilities for use of natural raw materials in treatment of mine water contaminated with heavy metals. Bus Calgary 9(5):852–60
  • Zhang RH, Li ZG, Liu XD, et al. 2017. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar. Ecol Eng 98:183–8. doi:10.1016/j.ecoleng.2016.10.057
  • Zhang C, Peng P, Song J, et al. 2012. Utilization of modified BCR procedure for the chemical speciation of heavy metals in Chinese soil reference material. Ecol Environ Sci 21(11):1881–4
  • Zhang G, Guo X, Zhao Z, et al. 2016. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ Pollut 218:513–22. doi:10.1016/j.envpol.2016.07.031
  • Zhang X, Wang H, He L, et al. 2013. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res Int 20(12):8472–83. doi:10.1007/s11356-013-1659-0
  • Zimmerman AJ and Weindorf DC. 2010. Heavy metal and trace metal analysis in soil by sequential extraction: A review of procedures. Int J Anal Chem 2010(3–4):387803

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.