324
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Effects of soil properties on the Cd threshold in typical paddy soils using BCR sequential extraction

, , , , , & show all
Pages 2160-2173 | Received 13 Apr 2018, Accepted 17 Jun 2018, Published online: 15 Jan 2019

References

  • Acosta JA, Cano AF, Arocena JM, et al. 2009. Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma 149(1/2): 101–9. doi:10.1016/j.geoderma.2008.11.034
  • Agrawal R, Kumar B, Priyanka K, et al. 2016. Micronutrient fractionation in coal mine-affected agricultural soils, India. Bull Environ Contam Tox 96(4):449–57. doi:10.1007/s00128-016-1745-3
  • Chaney R, Reeves P, Ryan J, et al. 2004. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals 17(5):549–53. doi:10.1023/B:BIOM.0000045737.85738.cf
  • Chaudri A, Mcgrath S, Gibbs P, et al. 2007. Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts. Chemosphere 66(8):1415–23. doi:10.1016/j.chemosphere.2006.09.068
  • Feng MH, Shan XQ, Zhang S, et al. 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ Pollut 137(2):231–40. doi:10.1016/j.envpol.2005.02.003
  • Gaw SK, Kim ND, Northcott GL, et al. 2008. Uptake of ΣDDT, arsenic, cadmium, copper, and lead by lettuce and radish grown in contaminated horticultural soils. J Agric Food Chem 56(15):6584–93. doi:10.1021/jf073327t
  • Golia EE, Tsiropoulos NG, Dimirkou A, et al. 2007. Distribution of heavy metals of agricultural soils of central Greece using the modified BCR sequential extraction method. Int J Environ Anal Chem 87(13/14):1053–63. doi:10.1080/03067310701451012
  • Guo XJ, Yuan DH, Li Q, et al. 2012. Spectroscopic techniques for quantitative characterization of Cu (II) and Hg (II) complexation by dissolved organic matter from lake sediment in arid and semiarid region. Ecotox Environ Saf 85(3):144–50. doi:10.1016/j.ecoenv.2012.08.016
  • He QB, Singh BR. 2010. Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. Eur J Soil Sci 44(4):641–50. doi:10.1111/j.1365-2389.1993.tb02329.x
  • Honma T, Ohba H, Kanekokadokura A, et al. 2016. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ Sci Technol 50(8):4178–4185. doi: 10.1021/acs.est.5b05424
  • Hseu ZY. 2004. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresource Technol 95(1):53–59. doi:10.1016/j.biortech.2004.02.008
  • Hu M, Li F, Liu C, et al. 2015. The diversity and abundance of As(III) oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Sci Rep UK 5:13611. doi:10.1038/srep13611
  • Jennings AA. 2013. Analysis of worldwide regulatory guidance values for the most commonly regulated elemental surface soil contamination. J Environ Manage 118(2):72–95. doi:10.1016/j.jenvman.2012.12.032
  • Kalis EJ, Temminghoff EJ, Visser A, et al. 2007. Metal uptake by Lolium perenne in contaminated soils using a four-step approach. Environ Toxicol Chem 26(2):335–45. doi:10.1897/06-173R.1
  • Khaokaew S, Landrot G, Chaney RL, et al. 2012. Speciation and release kinetics of zinc in contaminated paddy soils. Environ Sci Technol 46(7):3957–63. doi:10.1021/es204007t
  • Kirkham MB. 2006. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma 137(1/2):19–32. doi:10.1016/j.geoderma.2006.08.024
  • Kitsopoulos KP. 1999. Cation-exchange capacity (CEC) of zeolitic volcaniclastic materials: Applicability of the ammonium acetate saturation (AMAS) method. Clay Clay Miner 47(6):688–96. doi:10.1346/CCMN.1999.0470602
  • Konert M, Vandenberghe J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology 44(3):523–35. doi:10.1046/j.1365-3091.1997.d01-38.x
  • Kubová J, Matús P, Bujdos M, et al. 2008. Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil-plant metal transfer predictions in contaminated lands. Talanta 75(4):1110–22. doi:10.1016/j.talanta.2008.01.002
  • Lam HM, Remais J, Fung MC, et al. 2013. Food supply and food safety issues in China. Lancet 381(9882):2044–53. doi:10.1016/S0140-6736(13)60776-X
  • Li JH, Ying L, Hojae S, et al. 2010. Use of the BCR sequential extraction procedure for the study of metal availability to plants. J Environ Monit 12(2):466–71. doi:10.1039/B916389A
  • Lin X, Mou R, Cao Z, et al. 2016. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Sci Total Environ 569/570(1):97–104. doi:10.1016/j.scitotenv.2016.06.121
  • Liu J, Cao C, Wong M, et al. 2010. Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake. J Environ Sci–China 22(7):1067–72. doi:10.1016/S1001-0742(09)60218-7
  • Maiz I, Arambarri I, Garcia R, et al. 2000. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ Pollut 110(1):3–9. doi:10.1016/S0269-7491(99)00287-0
  • Menzies NW, Donn MJ, Kopittke PM. 2007. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ Pollut 145(1):121–30. doi:10.1016/j.envpol.2006.03.021
  • Ni L, Su L, Li S, et al. 2017. The characterization of dissolved organic matter extracted from different sources and their influence on cadmium uptake by Microcystis aeruginosa. Environ Toxicol Chem 36(7):1856–63. doi:10.1002/etc.3728
  • O'Connor GA. 1988. Use and misuse of the DTPA soil test. J Environ Qual 17(4):715–8.
  • Römkens PF, Brus DJ, Guo HY, et al. 2011. Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields. Sci Total Environ 409(17):3098–105. doi:10.1016/j.scitotenv.2011.04.045
  • Roussiez V, Ludwig W, Radakovitch O, et al. 2011. Fate of metals in coastal sediments of a Mediterranean flood-dominated system: An approach based on total and labile fractions. Estuar Coast Shelf S 92(3):486–95. doi:10.1016/j.ecss.2011.02.009
  • Sadyś M, Strzelczak A, Grinngofroń A, et al. 2015. Application of redundancy analysis for aerobiological data. Int J Biomenteorol 59(1):25–36. doi:10.1007/s00484-014-0818-4
  • Santiago-Martín AD, Valverde-Asenjo I, Quintana JR, et al. 2014. Carbonate, organic and clay fractions determine metal bioavailability in periurban calcareous agricultural soils in the Mediterranean area. Geoderma 221/222(6):103–12. doi:10.1016/j.geoderma.2014.01.009
  • Soylak M, Türkoglu O. 1999. Trace metal accumulation caused by traffic in an agricultural soil near a motorway in Kayseri, Turkey. J Trace Microprobe Techn 17(2):209–17.
  • Sungur A, Soylak M, Ozcan H. 2014. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability. Chem Spec Bioavailab 26(4):219–30. doi:10.3184/095422914X14147781158674
  • Walkley AJ, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38.
  • Wenzel WW, Kirchbaumer N, Prohaska T, et al. 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436(2):309–23. doi:10.1016/S0003-2670(01)00924-2
  • Wu FC, Liu CQ, Li W, et al. 2008. Ultraviolet absorbance titration for determining stability constants of humic substances with Cu(II) and Hg(II). Anal Chim Acta 616(1):115–21. doi:10.1016/j.aca.2008.04.003
  • Xiao L, Guan D, Peart MR, et al. 2017. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas. Environ Sci Pollut R 24(3):2558–71. doi:10.1007/s11356-016-8028-8
  • Yang Y, Zhang FS, Li HF, et al. 2009. Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. J Environ Manage 90(2):1117–22. doi:10.1016/j.jenvman.2008.05.004
  • Ye X, Li H, Ma Y, et al. 2014. The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties. J Soil Sediment 14(8):1407–16. doi:10.1007/s11368-014-0901-9
  • Yu Y, Huang Y, Zhang W. 2012. Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Fileld Crop Res 136(20):65–75. doi:10.1016/j.fcr.2012.07.021
  • Yu HY, Liu C, Zhu J, et al. 2016. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environ Pollut 209(1):38. doi:10.1016/j.envpol.2015.11.021
  • Yu H, Wang J, Fang W, Yuan J, Yang Z. 2006. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370:302–9. doi:10.1016/j.scitotenv.2006.06.013
  • Zeng F, Ali S, Zhang H, et al. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159(1):84–91. doi:10.1016/j.envpol.2010.09.019
  • Zhang C, Ge Y, Yao H, et al. 2012. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: A review. Front Env Sci Eng 6(4):509–17. doi:10.1007/s11783-012-0394-y
  • Zhang WL, Du Y, Zhai MM, et al. 2014. Cadmium exposure and its health effects: a 19-year follow-up study of a polluted area in China. Sci Total Environ 470/471(1):224–8. doi:10.1016/j.scitotenv.2013.09.070
  • Zhao K, Liu X, Xu J, et al. 2010. Heavy metal contaminations in a soil-rice system: Identification of spatial dependence in relation to soil properties of paddy fields. J Hazard Mater 181(1):778–787. doi:10.1016/j.jhazmat.2010.05.081
  • Zhong XL, Zhou SL, Zhu Q, et al. 2011. Fraction distribution and bioavailability of soil heavy metals in the Yangtze River Delta—A case study of Kunshan City in Jiangsu Province, China. J Hazard Mater 198(2):13–21. doi:10.1016/j.jhazmat.2011.10.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.