158
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Occurrence and transformation of mercury in formerly contaminated soils due to operation of amalgamation techniques and assessment of consequences

, , &
Pages 2189-2202 | Received 03 Jul 2019, Accepted 24 Aug 2019, Published online: 12 Sep 2019

References

  • Aller AJ, Lumbreras JM, Robles LC. 1996. Stability of bacterium-mercury complexes and speciation of soluble inorganic mercury species. Anal Chim Acta. 330:89–105. doi:10.1016/0003-2670(96)00167-5
  • Anonymus. 2016. Public notice No. 153/2016 about the conditions for protection of the agricultural soil quality. Legal code of The Czech Republic, pp. 2692–2699.
  • Árvay J, Demková L, Hauptvogl M. 2017. Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: spatial distribution and accumulation of mercury in four different ecosystems. Ecotox Environ Safe. 144:236–244. doi:10.1016/j.ecoenv.2017.06.020
  • He B, Jiang GB. 1999. Analysis of organomercuric species in soils from orchards and wheat fields by capillary gas chromatography on-line coupled with atomic absorption spectrometry after in situ hydride generation and headspace solid phase microextraction. Fresenius J Anal Chem. 365:615–618. doi:10.1007/s002160051532
  • Biester H, Müller G, Schöler HF. 2002. Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ. 284:191–203. doi:10.1016/S0048-9697(01)00885-3
  • Bloom NS, Porcella DB. 1994. Less mercury? Nature. 367:694.
  • Chen M, Lu W, Hou Z, Zhang Y, Jiang X, Wu J. 2017. Heavy metal pollution in soil associated with a large-scale cyanidation gold mining region in southeast of Jilin, China. Environ Sci Pollut Res Int. 24:3084–3096. doi:10.1007/s11356-016-7968-3
  • Coufalík P, Zvěřina O, Komárek J. 2014. Determination of mercury species using thermal desorption analysis in AAS. Chem Pap. 68:427–434. doi:10.2478/s11696-013-0471-0
  • Černá M. 2004. Opatření mezinárodních institucí a České republiky k omezování rizika znečišťování životního prostředí rtutí (Provision of international institutions and the Czech Republic to reduce the risk of environmental pollution of mercury). Chem Listy. 98:916–921. (in Czech).
  • Dadová J, Andráš P, Kupka J, Krnáč J, Andráš P, Hroncová E, Midula P. 2016. Mercury contamination from historical mining territory at Malachov Hg-deposit (Central Slovakia). Environ Sci Pollut Res Int. 23:2914–2927. doi:10.1007/s11356-056-015-5527-y
  • Environmental Protection Agency (EPA). 1999. Appendix E. Contaminant persistence and mobility factors. http://www.epa.gov/
  • ERM® Catalogue. 2010. ERM CC-580 Estuarine sediment EC JRC. Geel, Belgium: Institute for Reference Materials and Measurements.
  • Gage JC. 1975. Mechanisms for biodegradation of organic mercury-compounds – Actions of ascorbate and of soluble-proteins. Toxicol Appl Pharmacol. 32:225–238.
  • García-Sánchez M, Šípková A, Száková J, Kaplan L, Ochecová P, Tlustoš P. 2014. Applications of organic and inorganic amendments induce changes in the mobility of mercury and macro-and micronutrients of soils. Scientific World Journal. 2014:1. doi:10.1155/2014/407049
  • Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Gallego JR, Lobo MC. 2017. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Sci Total Environ. 584–585:1324–1332. doi:10.1016/j.scitoten.2017.02.011
  • Golding GR, Sparling R, Kelly CA. 2008. Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Appl Environ Microbiol. 74:667–675. doi:10.1128/AEM.00717-07
  • Grégoire DS, Poulain AJ. 2014. A Little bit of light a long way: the role of phototrophs on mercury cycling. Metallomics. 6:396–407. doi:10.1039/C3MT00312D
  • Gulley AL. 2017. Valuing environmental impacts of mercury emissions from gold mining: dollar per troy ounce for twelve open-pit, small-scale, and artisanal mining sites. Resour Policy. 52:266–272. doi:10.1016/j.resourpol.2017.03.009
  • Han Y, Kingston HM, Boylan HM, Rahman GMM, Shah S, Richter RC, Link DD, Bhandari S. 2003. Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal Bioanal Chem. 375:428–436. doi:10.1007/s00216-002-1701-4
  • Hojdová M, Navrátil T, Rohovec J, Penížek V, Grygar T. 2009. Mercury distribution and speciation in soils affected by historic mercury mining. Water Air Soil Pollut. 200:89–99. doi:10.1007/s11270-008-9895-5
  • Kelly CA, Rudd JWM, Holoka MH. 2003. Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ Sci Technol. 37:2941–2946. doi:10.1021/es0263660
  • Kiyono M, Pan-Hou H. 2006. Genetic engineering of bacteria for environmental remediation of mercury. J Health Sci. 52:199–204. doi:10.1248/jhs.52.199
  • Krausß P, Deyhle M, Maier KH. 1997. Field study on the mercury content of saliva. Toxicol Environ Chem. 63:1–4.
  • Kumari A, Kumar B, Manzoor S, Kulshrestha U. 2015. Status mercury of atmospheric research in South Asia: a review. Aerosol Air Qual Res. 15:1092–1109. doi:10.4209/aaqr.2014.05.0098
  • Langeland AL, Hardin RD, Neitzel RL. 2017. Mercury levels in human hair and farmed fish near artisanal and small-scale gold mining communities in the Madre de Dios river basin, Peru. Int J Environ Res Public Health. 14:302. doi:10.1016/S0048-9697(01)00885-3
  • Liu YR, Zheng YM, Shen JP, Zhang L-M, He J-Z. 2010. Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environ Sci Pollut Res. 17:1237–1244. doi:10.1007/s11356-010-0302-6
  • Lu C, Wu YG, Hu S. 2016. Drying-wetting cycles facilitated mobilization and transport of metal-rich colloidal particles from exposed mine tailing into soil in a gold mining region along the Silk Road. Environ Earth Sci. 75:1031. doi:10.1007/s12665-016-5812-1
  • Marchant BP, Saby NPA, Arrouays D. 2017. A survey of topsoil arsenic and mercury concentrations across France. Chemosphere. 181:635–644. doi:10.1016/j.chemsphere.2017.04.106
  • Morávek P, Cícha J, Losertová L, Tichý A, Toms B, Tvrdý J, Večeřa J, Zemek V. 2017. Stezkami zlatonosných revírů Čech a Moravy. Zlatonosný revír Kozí Hory-Libčice 40–42, ČGS Praha. (in Czech).
  • Musilova J, Árvay J, Vollmannova A, Toth T, Tomas J. 2016. Environmental contamination by heavy metals in region with previous mining activity. Bull Environ Contam Toxicol. 97:569–575. doi:10.1007/s00128-016-1907-3.
  • Nóvoa-Muñoz JC, Pontevedra-Pombal X, Martínez-Cortizas A, García-Rodeja Gayoso E. 2008. Mercury accumulation in upland acid forest ecosystems nearby a coalfired power-plant in Southwest Europe (Galicia, NW Spain). Sci Total Environ. 394:303–312. doi:10.1016/j.scitotenv.2008.01.044
  • Novozamsky J, Lexmond TM, Houba VJG. 1993. A single extraction procedure of soil for evaluation of uptake of some heavy metals in plants. Int J Envir Anal Chem. 51:47–58.
  • Ordónez A, Álvarez R, Charlesworth E, De Miguel E, Loredo J. 2011. Risk assessment of soils contaminated by mercury mining, Northern Spain. J Environ Monit. 13:128–136. ISSN 1464-0325. doi:10.1039/C0EM00132E
  • Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S. 2006. Global anthropogenic mercury emission inventory for 2000. Atmos Environ. 40:4048–4063. doi:10.1016/j.atmosenv.2006.03.041
  • Pandey SK, Kim KH, Brown R. 2011. Measurement techniques for mercury species in ambient air. Trends Anal Chem. 30:899–916. doi:10.1016/j.trac.2011.01.017
  • Pavilonis B, Grassman J, Johnson G, Diaz Y, Caravanos J. 2017. Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes. Environ Res. 154:1–9. doi:10.1016/j.envres.2016.12.010
  • Pirrone N, Aas W, Cinnirella S, Ebinghaus R, Hedgecock IM, Pacyna J, Sprovieri F, Sunderland EM. 2013. Toward the next generation of air quality monitoring: mercury. Atmos Environ 80:599–611. doi:10.1016/j.atmosenv.2013.03.053
  • Public Notice 13/1994. 1994. Czech Regulation. Specifications for protection of agricultural soils. Prague: Czech Ministry of Environment. (in Czech). https://www.federalregister.gov>documents>1994/13
  • Rafaj P, Bertok I, Cofata J, Schopp V. 2013. Scenarios of global mercury emissions from anthropogenic sources. Atmos Environ. 79:472–479. doi:10.1016/j.atmoserov.2013.06.042
  • Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC. 2010. Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere. 81:1369–1377. doi:10.1016/j.chemosphere.2010.09.030
  • Risher JF, Tucker P. 2016. Alkyl mercury-induced toxicity: multiple mechanisms of action. Rev Environ Contam Toxicol. 240:105–149. doi:10.1007/398_2016_1.
  • Rumayor M, Lopez-Anton MA, Díaz-Somoano M, Maroto-Valer MM, Richard J-H, Biester H, Martínez-Tarzona MR. 2016. A comparison of devices using thermal desorption for mercury speciation in solids. Talanta. 150:272–277. doi:10.1016/j.talanta.2015.12.058
  • Santos de Souza E, Texeira RA, Cardoso da Costa HS, Oliveira FJ, Azevedo Melo LC, do CarmoFreitas Faial K, Rodrigues Fernandes A. 2017. Assessment of risk to human health from simultaneous exposure to multiple contaminants in an artisanal gold mine in Serra Pelada, Pará, Brazil. Sci Total Environ. 576:683–695. doi:10.1016/j.scitotenv.2016.10.133
  • Sánchez DM, Quejido AJ, Fernández H, Hernández C, Schmid T, Millán R, Gonzalez M, Aldea M, Martin R, Morante R. 2005. Mercury and trace element fraction in Almaden soils by application of different sequential extraction procedures. Anal Bioanal Chem. 381:1507–1513. doi:10.1007/s00216-005-3058-y
  • Selin NE. 2009. Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour. 34:43–63. doi:10.1146/annurev.environ.051308.084314
  • Sholupov S, Pogarev S, Ryzhov V, Stroganov A, Mashyanov N, Siperstein J. 2004. Multifunctional Zeeman mercury analytical system RA-915+: practical experience and future trends. Rudarsko-Metalurski Zbornik. 51:2019–2021.
  • Sysalová J, Kučera J, Fikrle M, Drtinová B. 2013. Determination of the total mercury in contaminated soils by direct solid sampling atomic absorption spectrometry using an AMA-254 device and radiochemical neutron activation analysis. Microchem J. 110:691–694. doi:10.1016/j.microc.2013.08.004
  • Sysalová J, Kučera J, Drtinová B, Červenka R., Zvěřina O, Komárek J, Kameník J. 2017. Mercury species in formerly contaminated soils and released soil gases. Sci Total Environ. 584–585:1032–1039. doi:10.1016/j.scitotenv.2017.01.157
  • Száková J, Havlíčková J, Šípková A, Gabriel J, Švec K, Baldrian P, Sysalová J, Coufalík P, Červenka R, Zvěřina O, et al. 2016. Effects of the soil microbial community on mobile proportions and speciation of mercury (Hg) in contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng. 51:364–370. doi:10.1080/10934529.2015.1109413
  • Száková J, Burešová A, Praus L, García-SánsezM, Holečková Z, Gabriel J, Sysalová J, Červenka R, Komárek J, Grohová S, et al. 2016a. The response of mercury (Hg) transformation in soil to sulfur compounds and sulfur-rich biowaste application. Environ Earth Sci. 75:584. doi:10.1007/s12665-016-5387
  • Taube F, Pommer L, Larsson T, Shchukarev A, Nordin A. 2008. Soil remediation–mercury speciation in soil and vapour phase during thermal treatment. Water Air Soil Pollut. 193:155–163. doi:10.1007/s11270-008-9679-y
  • Telmer K, Stapper D. 2012. Reducing mercury use in artisanal and small-scale gold mining: a practical guide. A UNEP Glob Mercury Partnersh Doc Conjuction Artis Gold Counc 68. http://hdl.handle.net/20.500.11822/22524
  • Tomiyasu T, Kodamatani H, Hamada YK, Matsuyama A, Imura R, Taniguchi Y, Hidayati N, Rahajoe RS. 2017. Distribution of total mercury and methylmercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia. Environ Sci Pollut Res Int. 24:2643–2652. doi:10.1007/s11356-016-7998
  • Tuček M, Bencko V, Krýsl S. 2007. Zdravotní rizika rtuti ze zubních amalgámů. Chem Listy. 101:1038–1044. (in Czech).WOS:000251916900008
  • Ulrich SMT, Tanton W, Abdrashitova SA. 2001. Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol. 31:241–293. doi:10.1080/20016491089226
  • Umlaufová M, Száková J, Najmanová J, Sysalová J, Tlustoš P. 2018. The soil-plant transfer of risk elements within the area of an abandoned gold mine in Libčice, Czech Republic. J Environ Sci Heal A. 53:1267–1276. doi:10.1080/10934529.2018.1528041.
  • UNEP. 2013. Global mercury assessment: sources, Emissions, releases and environmental transport.wedocs.unep.org>handle
  • USDHHS. 1999. Toxicological profile for mercury. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia.
  • Valenete RJ, Shea C, Hemes KJ, Tanner RL. 2007. Atmosheric mercury in the Great Smoky Mountains compared to regional and global levels. Atmos Environ. 41:1861–1873.https://wwwatsdr.cdc.gov>toprofiles
  • Váňa T, Litochleb J. 2001. Geological walk to Novy Knin and Goatish Mountains. (in Czech). Exkurze ČG Společnosti. 8:l7–l8. ČGÚ Praha
  • Vaselli O, Higueras P, Nisi B, Esbrí JM, Cabassi J, Martínez-Coronado A, Tassi F, Rappuoli D. 2013. Distribution of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): a geochemical survey prior the reclamation project . Environ Res. 125:179–187. doi:10.1016/j.envres.2012.12.00
  • Veiga MM, Angeloci G, Niquen W, Seccatore J. 2015. Reducing mercury pollution by training Peruvian artisanal gold miners. J Clean Prod. 94:268–277. doi:10.1016/j.jclepro.2015.01.087
  • Wickre JB, Karagas MR, Folt CL, Sturup S. 2004. Environmental exposure and fingernail analysis of arsenic and mercury in children and adults in a Nicaraguan gold mining community. Arch Environ Health. 400–409: doi:10.3200/AEOH.59.8.400-409
  • Yasutake A, Cheng JP, Kiyono M, Uragichi S, Liu X, Muira K. 2011. Rapid monitoring of mercury in air from an organic chemical factory in China using a portable mercury analyzer. ScientificWorldJournal. 11:1630–1640. doi:10.1100/2011/493207
  • Yin L, Yu K, Lin S, Song X, Yu X. 2016. Associations of blood mercury, inorganic mercury, methyl mercury and bisphenol A with dental surface restorations in the U.S. population, NHANES 2003–2004 and 2010–2012. Ecotoxicol Environm Safety. 134:213–225. doi:10.1016/j.ecoenv.2016.09.001.
  • Yin Y, Allen HE, Li Y, Sunders HPF. 1996. Adsorption of mercury (II) by soil: effect of pH, chloride, and organic metter. J Environ Qual. 25:837–844.
  • Zhang W, Chen LX, Liu DY. 2012. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol. 93:1305–1314. doi:10.1007/s00253-011-3454-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.