207
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Bioaccessibilities and health risk assessment of heavy and trace elements in fish from an urban city, India

& ORCID Icon
Pages 50-70 | Received 21 Sep 2019, Accepted 07 Nov 2019, Published online: 19 Nov 2019

References

  • Adachi K, Tainosho Y. 2004. Characterization of heavy metal particles embedded in tire dust. Environ Int. 30(8):1009–1017. doi:10.1016/j.envint.2004.04.004
  • Adhikari S, Ghosh L, Rai SP, Ayyappan S. 2009. Metal concentrations in water, sediment, and fish from sewage-fed aquaculture ponds of Kolkata, India. Environ Monit Assess. 159(1-4):217. doi:10.1007/s10661-008-0624-8
  • Adimalla N, Li P. 2018. Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum Ecol Risk Assess. 25(1–2):81–103. doi:10.1080/10807039.2018.1480353
  • Agarwal R, Kumar R, Behari JR. 2007. Mercury and lead content in fish species from the river Gomti, Lucknow, India, as biomarkers of contamination. Bull Environ Contam Toxicol. 78(2):118–122. doi:10.1007/s00128-007-9035-8
  • Ahmed MK, Baki MA, Kundu GK, Islam MS, Islam MM, Hossain MM. 2016. Human health risks from heavy metals in fish of Buriganga river, Bangladesh. SpringerPlus. 5(1):1697. doi:10.1186/s40064-016-3357-0
  • Ahmed F, Ishiga H. 2006. Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmos Environ. 40(21):3835–3844. doi:10.1016/j.atmosenv.2006.03.004
  • Alloway BJ. 2013. Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Environ Pollut. 22:465–496.
  • Amiard JC, Amiard-Triquet C, Charbonnier L, Mesnil A, Rainbow PS, Wang WX. 2008. Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food Chem Toxicol. 46(6):2010–2022. doi:10.1016/j.fct.2008.01.041
  • ANZFA 2011. Australian and New Zealand Food Standards Code, Standard 1.4.1- Contaminants and Natural Toxicants (F2011C00542). http://www.foodstandards.gov.au/code/Documents/1.4.1%20Contaminants%20v157.pdf.
  • Banerjee S, Maiti SK, Kumar A. 2015. Metal contamination in water and bioaccumulation of metals in the planktons, molluscs and fishes in Jamshedpur stretch of Subarnarekha River of Chotanagpur plateau, India. Water Environ J. 29(2):207–213. doi:10.1111/wej.12108
  • Batvari BPD, Kamala-Kannan S, Shanthi K, Krishnamoorthy R, Lee KJ, Jayaprakash M. 2008. Heavy metals in two fish species (Carangoidel malabaricus and Belone stronglurus) from Pulicat Lake, North of Chennai, Southeast Coast of India. Environ Monit Assess. 145(1–3):167–175. doi:10.1007/s10661-007-0026-3
  • Begum, A, Amin, M N, Kaneco, S, Ohta, K. 2005. Selected elemental composition of the muscle tissue of three species of fish, Tilapia nilotica, Cirrhina mrigala and Clarius batrachus, from the fresh water Dhanmondi Lake in Bangladesh. Food Chemistry. 93(3):439–443. doi:10.1016/j.foodchem.2004.10.021.
  • Belton B, Bush SR, Little DC. 2018. Not just for the wealthy: rethinking farmed fish consumption in the Global South. Glob Food Secur. 16:85–92. doi:10.1016/j.gfs.2017.10.005
  • Bermudez, GM, Moreno, M, Invernizzi, R, Plá, R, Pignata, M L. 2010. Heavy metal pollution in topsoils near a cement plant: The role of organic matter and distance to the source to predict total and HCl-extracted heavy metal concentrations. Chemosphere. 78(4):375–381. doi:10.1016/j.chemosphere.2009.11.012.
  • Cabañero AI, Madrid Y, Cámara C. 2004. Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal Chim Acta. 526(1):51–61. doi:10.1016/j.aca.2004.09.039
  • Carvalho ML, Santiago S, Nunes ML. 2005. Assessment of the essential element and heavy metal content of edible fish muscle. Anal Bioanal Chem. 382(2):426–432. doi:10.1007/s00216-004-3005-3
  • Cheng Z, Nie XP, Wang HS, Wong MH. 2013. Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption. Environ Int. 57:75–80. doi:10.1016/j.envint.2013.04.005
  • Chowdhury A, Naz A, Maiti SK. 2017. Health risk assessment of ‘tiger prawn seed’ collectors exposed to heavy metal pollution in the conserved mangrove forest of Indian Sundarbans: A socioenvironmental perspective. Hum Ecol Risk Assess. 23(2):203–224. doi:10.1080/10807039.2016.1238300
  • Colvin MA. 2002. A comparison of gill netting and electrofishing as sampling techniques for white bass in Missouri's large reservoirs. N Am J Fish Manag. 22(2):690–702. doi:10.1577/1548-8675(2002)022<0690:ACOGNA > 2.0.CO;2
  • Davidson JW. 1979. Improved method for the determination of mercury in fish tissue using 50% hydrogen peroxide and a hot block. Analyst. 104(1240):683–687.
  • Dhanakumar S, Solaraj G, Mohanraj R. 2015. Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicol Environ Saf. 113:145–151. doi:10.1016/j.ecoenv.2014.11.032
  • Duong TT, Lee BK. 2011. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J Environ Manage. 92(3):554–562. doi:10.1016/j.jenvman.2010.09.010
  • EU (2001). European Union Commission Regulation as Regards Heavy Metals, Directive, 2001/22/EC, No. 466.
  • FAO (Food and Agricultural Organization). 1983. Compilation of Legal Limits for Hazardous Substances in Fish and Fishery Products FAO Fishery circular No. 464, pp. 5–100.
  • Gilbertson DD, Grattan JP, Cressey M, Pyatt FB. 1997. An air-pollution history of metallurgical innovation in iron-and steel-making: a geochemical archive of Sheffield. Water Air Soil Poll. 100(3/4):327–341.
  • Gioia SM, Babinski M, Weiss DJ, Spiro B, Kerr AA, Verıssimo TG, Ruiz I, Prates JC. 2017. An isotopic study of atmospheric lead in a megacity after phasing out of leaded gasoline. Atmos Environ. 49:70–83. doi:10.1016/j.atmosenv.2016.10.049
  • Giri S, Singh AK. 2015. Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environ Monit Assess. 187(3):63.
  • Goel PK. 2006. Water pollution: causes, effects and control. New Delhi: New Age International.
  • Gupta SK, Chabukdhara M, Kumar P, Singh J, Bux F. 2014. Evaluation of ecological risk of metal contamination in river Gomti, India: a biomonitoring approach. Ecotoxicol Environ Saf. 110:49–55. doi:10.1016/j.ecoenv.2014.08.008
  • Gupta RK, Majumdar D, Trivedi JV, Bhanarkar AD. 2012. Particulate matter and elemental emissions from a cement kiln. Fuel Process Technol. 104:343–351. doi:10.1016/j.fuproc.2012.06.007
  • Hamilton SJ, Mehrle PM. 1986. Metallothionein in fish: review of its importance in assessing stress from metal contaminants. Trans Am Fish Soc. 115(4):596–609. doi:10.1577/1548-8659(1986)115<596:MIF > 2.0.CO;2
  • Hu J, Wu F, Wu S, Cao Z, Lin X, Wong MH. 2013. Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model. Chemosphere. 91(4):455–461. doi:10.1016/j.chemosphere.2012.11.066
  • Ihedioha JN, Ukoha PO, Ekere NR. 2017. Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environ Geochem Health. 39(3):497–515. doi:10.1007/s10653-016-9830-4
  • Javed M, Usmani N. 2016. Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting, thermal power plant effluent loaded canal. SpringerPlus. 5(1):776. doi:10.1186/s40064-016-2471-3
  • Javed M, Usmani N, Ahmad I, Ahmad M. 2015. Studies on the oxidative stress and gill histopathology in Channa punctatus of the canal receiving heavy metal-loaded effluent of Kasimpur Thermal Power Plant. Environ Monit Assess. 187(1):41–79. doi:10.1007/s10661-014-4179-6
  • Jayaprakash M, Kumar RS, Giridharan L, Sujitha SB, Sarkar SK, Jonathan MP. 2015. Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: a metropolitan city effect. Ecotoxicol Environ Saf. 120:243–255. doi:10.1016/j.ecoenv.2015.05.042
  • Jayaram KC. 1981. The freshwater fishes of India, Pakistan, Bangladesh, Burma and Sri Lanka: A handbook. Calcutta: Zoological Survey of India.
  • Kelly J, Thornton I, Simpson PR. 1996. Urban geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl Geochem. 11(1-2):363–370. doi:10.1016/0883-2927(95)00084-4
  • Khan S, Shah IA, Muhammad S, Malik RN, Shah MT. 2015. Arsenic and heavy metal concentrations in drinking water in Pakistan and risk assessment: a case study. Hum Ecol Risk Assess. 21(4):1020–1031. doi:10.1080/10807039.2014.950925
  • Kicińska A. 2018. Health risk assessment related to an effect of sample size fractions: methodological remarks. Stoch Environ Res Risk Assess.. 32(6):1867–1887. doi:10.1007/s00477-017-1496-7
  • Kumar BG, Datta KK, Joshi PK, Katiha PK, Suresh R, Ravisankar T, Ravindranath K, Menon M. 2008. Domesticfish marketing in India–changing structure, conduct, performance andpolicies._Agricultural Economics Research Review._:345–354
  • Kumar P, Dey MM. 2004. A study on modelling of household demand for fish in India. Indian J Agric Econ. 59(3):465.
  • Kumar P, Dey MM, Paraguas FJ. 2005. Demand for fish by species in India: Three-stage budgeting framework. Agric Econ Res Rev. 18(347-2016-16682):167–186.
  • Kumari P. 2018. Distribution of metal elements in capillary water, overlying water, sediment, and aquatic biota of three interconnected ecosystems. Environ Process. 5(2):385–411. doi:10.1007/s40710-018-0303-x
  • Kumari P, Chowdhury A, Maiti SK. 2018. Assessment of heavy metal in the water, sediment, and two edible fish species of Jamshedpur Urban Agglomeration, India with special emphasis on human health risk. Hum Ecol Risk Assess. 24(6):1477–1500. doi:10.1080/10807039.2017.1415131
  • Kumari P, Maiti SK. 2019. Health risk assessment of lead, mercury, and other metal (loid) s: A potential threat to the population consuming fish inhabiting, a lentic ecosystem in Steel City (Jamshedpur), India. Hum Ecol Risk Assess. 25(8):2174–2192. doi:10.1080/10807039.2018.1495055
  • Laird BD, Chan HM. 2013. Bioaccessibility of metals in fish, shellfish, wild game, and seaweed harvested in British Columbia, Canada. Food Chem Toxicol. 58:381–387. doi:10.1016/j.fct.2013.04.033
  • Lei B, Chen L, Hao Y, Cao T, Zhang X, Yu Y, Fu J. 2013. Trace elements in animal-based food from Shanghai markets and associated human daily intake and uptake estimation considering bioaccessibility. Ecotoxicol Environ Saf. 96:160–167. doi:10.1016/j.ecoenv.2013.06.032
  • Li Z, Feng X, Li G, Bi X, Zhu J, Qin H, Dai Z, Liu J, Li Q, Sun G. 2013. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environ Pollut. 182:408–416.
  • Li P, He X, Guo W. 2019. Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: A case study in Yan’an City on the Loess Plateau of northwest China. Hum Ecol Risk Assess. 25(1–2):11–31. doi:10.1080/10807039.2018.1553612
  • Martin R, Sanchez DM, Gutierrez AM. 1998. Sequential extraction of U, Th, Ce, La and some heavy metals in sediments from Ortigas river, Spain. Talanta. 46(5):1115–1121. doi:10.1016/S0039-9140(97)00374-3
  • Migaszewski Z, Gałuszka A. 2016. Environmental geochemistry. Warsaw: PWN.
  • Mohammed E, Mohammed T, Mohammed A. 2017. Optimization of an acid digestion procedure for the determination of Hg, As, Sb, Pb and Cd in fish muscle tissue. MethodsX. 4:513–523. doi:10.1016/j.mex.2017.11.006
  • Nabulo G, Oryem-Origa H, Diamond M. 2006. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ Res. 101(1):42–52. 16527265 doi:10.1016/j.envres.2005.12.016.
  • Narsimha A, Rajitha S. 2018. Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India. Hum Ecol Risk Assess. 24:2119–2132 doi:10.1080/10807039.2018.1438176
  • Naz A, Chowdhury A, Mishra BK, Karthikeyan K. 2018. Distribution of heavy metals and associated human health risk in mine, agricultural and roadside soils at the largest chromite mine of India. Environ Geochem Health. 40(5):2155–2175. doi:10.1007/s10653-018-0090-3
  • Ouédraogo O, Amyot M. 2013. Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso). Sci Total Environ. 444:243–254. doi:10.1016/j.scitotenv.2012.11.095
  • Piumsombun S. 2001. Production, accessibility, marketing and consumption patterns of freshwater aquaculture products in Asia: A cross country comparison. FAO Fisheries Circular, 973.
  • Rahman MS, Molla AH, Saha N, Rahman A. 2012. Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Dhaka, Bangladesh. Food Chem. 134(4):1847–1854. doi:10.1016/j.foodchem.2012.03.099
  • Raj D, Chowdhury A, Maiti SK. 2017. Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Human and Ecological Risk Assessment: An International Journal. 23(4):767–787. doi:10.1080/10807039.2016.1278519.
  • Raj D, Maiti SK. 2019. Bioaccumulation of potentially toxic elements in tree and vegetable species with associated health and ecological risks: a case study from a thermal power plant, Chandrapura, India. Rend Fis Acc Lincei. 30(3):649–665. doi:10.1007/s12210-019-00831-7
  • Rao NVS. 1989. Handbook: Freshwater molluscs of India. Zoological Survey of India. Calcutta.
  • Sekhar KC, Chary NS, Kamala CT, Raj DS, Rao AS. 2004. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru Lake by edible fish. Environ Int. 29(7):1001–1008. doi:10.1016/S0160-4120(03)00094-1
  • Shaikh MJ. 2013. Analysisof heavy metals in water and fish Cirrhina mrigala of river Godavari, at Nathsagardam in Maharashtra, India. Bioscan. 8(3):1025–1027.
  • Shen H, Starr J, Han J, Zhang L, Lu D, Guan R, Xu X, Wang X, Li J, Li W, et al. 2016. The bioaccessibility of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) in cooked plant and animal origin foods. Environ Int. 94:33–42. doi:10.1016/j.envint.2016.05.003
  • So TY, Farrington E, Absher RK. 2009. Evaluation of the accuracy of different methods used to estimate weights in the pediatric population. Pediatrics. 123(6):e1045–51. doi:10.1542/peds.2008-1968
  • Somer G, Ünlü AN. 2007. The effect of acid digestion on the recoveries of trace elements: recommended policies for the elimination of losses. Turk J Chem. 30(6):745–753.
  • Subramanian KS. 1996. Determination of metals in biofluids and tissues: sample preparation methods for atomic spectroscopic techniques. Spectrochim Acta B. 51(3):291–319. doi:10.1016/0584-8547(95)01425-X
  • Tadiso TM, Borgstrøm R, Rosseland BO. 2011. Mercury concentrations are low in commercial fish species of Lake Ziway, Ethiopia, but stable isotope data indicated biomagnification. Ecotoxicol Environ Saf. 74(4):953–959. doi:10.1016/j.ecoenv.2011.01.005
  • Tao Y, Yuan Z, Xiaona H, Wei M. 2012. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol Environ Saf. 81:55–64. 22633085 doi:10.1016/j.ecoenv.2012.04.014.
  • Trojanowska M, Świetlik R. 2019. Investigations of the chemical distribution of heavy metals in street dust and its impact on risk assessment for human health, case study of Radom (Poland). Hum Ecol Risk Assess. doi:10.1080/10807039.2019.1619070.
  • USEPA. 1989. Guidance Manual for Assessing Human Health Risks from ChemicallyContaminated, Fish and Shellfish EPA–503/8–89–002 US Environmental Protection Agency (USEPA), Washington DC.
  • USEPA. 2000. Risk-based Concentration Table. Philadelphia, PA: United States Environmental Protection Agency.
  • Wang HS, Man YB, Wu FY, Zhao YG, Wong CK, Wong MH. 2010. Oral bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) through fish consumption, based on an in vitro digestion model. J Agric Food Chem. 58(21):11517–11524. doi:10.1021/jf102242m
  • Wang HS, Zhao YG, Man YB, Wong CK, Wong MH. 2011. Oral bioaccessibility and human risk assessment of organochlorine pesticides (OCPs) via fish consumption, using an invitro gastrointestinal model. Food Chem. 127(4):1673–1679. doi:10.1016/j.foodchem.2011.02.035
  • Xing GH, Yang Y, Chanjky Tao S, Wong MH. 2008. Bioaccessibility of polychlorinated biphenyls indifferent foods using an in vitro digestion method. Environ Pollut. 156(3):1218–1226.
  • Zheng J, Tan M, Shibata Y, Tanaka A, Li Y, Zhang G, Zhang Y, Shan Z. 2004. Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmos Environ. 38(8):1191–1200. doi:10.1016/j.atmosenv.2003.11.004
  • Zhou Y, Ning XA, Liao X, Lin M, Liu J, Wang J. 2013. Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant. Ecotoxicol Environ Saf. 95:130–136. doi:10.1016/j.ecoenv.2013.05.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.