638
Views
74
CrossRef citations to date
0
Altmetric
Articles

Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur district, Andhra Pradesh, India

ORCID Icon, & ORCID Icon
Pages 2316-2348 | Received 27 Jan 2020, Accepted 01 Mar 2020, Published online: 23 Mar 2020

References

  • Aghapour S, Bina B, Tarrahi MJ, Amiri F, Ebrahimi A. 2018. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS. Environ Mon Assess. 190:137. doi:10.1007/s10661-018-6467-z
  • Ahada CPS, Suthar S. 2019. Assessment of human health risk associated with high groundwater fluoride intake in southern districts of Punjab, India. Expo Health. 11:267–275. doi:10.1007/s12403-017-0268-4
  • Amini M, Mueller K, Abbaspour KC, Rosenberg T, Afyuni M, Moller KN, Sarr M, Johnson CA. 2008. Statistical modelling of global geogenic fluoride contamination in groundwaters. Environ Sci Technol. 42(10):3662–3668. doi:10.1021/es071958y
  • APHA. 2012. Standard method for the examination of water and wastewater. 19th ed. Washington (DC): American Public Association.
  • Apparao BV, Karthikeyan G. 1986. Permissible limits of fluoride ion in drinking water in Indian rural environment. Indian J Environ Protect. 6:172–175.
  • Ayoob S, Gupta AK. 2006. Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol. 36(6):433–487. doi:10.1080/10643380600678112
  • Babu Rao G, Nageswara Rao PV. 2017. Geochemistry of fluoride bearing groundwater from Nuzendla Mandal, Guntur district, Andhra Pradesh, India. Int J Earth Sci Eng. 10:518–527. 10.21276/ijee.2017.10.0308
  • BIS. 2012. Drinking water-specification. Bureau of Indian Standards. New Delhi IS:10500
  • Chatterjee MK, Mohabey NK. 1998. Potential fluorosis problems around Chandidongri, Madhya Pradesh, India. Environ Geochem Health. 20(1):1–4. doi:10.1023/A:1006529925395
  • Chen J, Wu H, Qian H, Gao Y. 2017. Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of Northwest China. Expo Health. 9(3):183–195. doi:10.1007/s12403-016-0231-9
  • Chidambaram S, Bala Krishna Prasad M, Manivannan R, Karmegam U, Singaraja C, Anandhan P, Prasanna MV, Manikandan S. 2013. Environmental hydrogeochemistry and genesis of fluoride in groundwaters of Dindigul district, Tamilnadu (India). Environ Earth Sci. 68(2):333–342. doi:10.1007/s12665-012-1741-9
  • Choubisa SL, Sompura K, Bhatt SK, Choubisa DK, Pandya H, Joshi SC, Choubisa L. 1996. Prevalence of fluorosis in some villages of Dungarpur district of Rajasthan. Indian J Environ Health. 38:119–126.
  • CGWB. 2013. Groundwater brochure, Guntur district. New Delhi: Central Ground Water Board, Government of India.
  • CGWB. 2015. Groundwater quality scenario in India. New Delhi: Central Ground Water Board, Government of India.
  • Das S, Mehta BC, Samanta SK, Das PK, Srivastava SK. 2000. Fluoride hazards in groundwater of Orissa, India. Indian J Environ Health. 1:40–46.
  • Datta PS, Deb DL, Tyagi SK. 1996. Stable isotope (18O) investigations on the processes controlling fluoride contamination of groundwater. J Contam Hydrol. 24(1):85–96. doi:10.1016/0169-7722(96)00004-6
  • Deepali M, Malpe DB, Subba Rao N, Sunitha B. 2020. Geochemical assessment of fluoride enriched groundwater and health implications from a part of Yavtmal district, India. Hum Ecol Risk Assess. 26(3):673–694. doi:10.1080/10807039.2018.1528862
  • Domenico PA, Schwartz FW. 1990. Physical and chemical hydrogeology. New York, NY: Wiley.
  • Galhardi JA, Bonotto DM. 2016. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Environ Sci Pollut Res. 23(18):18911–18927. doi:10.1007/s11356-016-7077-3
  • Garg VK, Suthar S, Singh S, Sheoran A, Meenakshi G, Jain S. 2009. Drinking water quality in villages of south western Haryana, India: assessing human health risks associated with hydrochemistry. Environ Geol. 58:1329–1340. doi:10.1007/s00254-008-1636-y
  • Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science. 17:1088–1090. doi:10.1126/science.170.3962.1088
  • Guo Q, Wang Y, Ma T, Ma R. 2007. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J Geochem Explor. 93(1):1–12. doi:10.1016/j.gexplo.2006.07.001
  • Handa BK. 1975. Geochemistry and genesis of fluoride-containing groundwaters in India. Groundwater. 13(3):275–281. doi:10.1111/j.1745-6584.1975.tb03086.x
  • He S, Wu J. 2019. Hydrogeochemical characteristics, groundwater quality and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi County, northwest China. Expo Health. 11(2):125–137. doi:10.1007/s12403-018-0289-7
  • He X, Li P. 2020. Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): occurrence, sources and health risks. Expo Health. doi:10.1007/s12403-020-00344-x
  • He X, Li P, Ji Y, Wang Y, Su Z, Elumalai V. 2020a. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: occurrence, distribution and management. Expo Health. doi:10.1007/s12403-020-00347-8
  • He X, Li P, Wu J, Wei M, Ren X, Wang D. 2020b. Poor groundwater quality and high potential health risks in the Datong basin, northern China: research from published data. Environ Geochem Health. doi:10.1007/s10653-020-00520-7
  • He X, Wu J, He S. 2019. Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, Northwest China. Hum Ecol Risk Assess. 25(1-2):32–51. doi:10.1080/10807039.2018.1531693
  • Hem JD. 1991. Study and interpretation of the chemical characteristics of natural water; U.S. Geological Survey Water Supply Paper 2254, p. 264. Jodhpur (India): Scientific Publishers.
  • ICMR (Indian Council of Medical Research). 2009. Dietary Allowances for Indians. Indian Council of Medical Research, Jamai-Osmania PO, Hyderabad. Available at https://vetconcerns.org/wp-content/uploads/2015/06/Recommended-Dietary-Allowance-ICMR.pdf
  • Jacks G. 1979. High fluoride groundwater in southern India. Report of Central Groundwater Board. Coimbatore (India): Central Groundwater Board.
  • Jacks G, Bhattacharya P, Chaudhary V, Singh KP. 2005. Controls on the genesis of some high-fluoride groundwaters in India. Appl Geochem. 20(2):221–228. doi:10.1016/j.apgeochem.2004.07.002
  • Karunanidhi D, Aravinthasamy P, Priyadarsi DR, Praveenkumar RM, Prasanth K, Selvapraveen S, Thowbeekrahman A, Subramani T, Srinivasamoorthy K. 2020. Evaluation of non-carcinogenic risks due to fluoride and nitrate contaminations in a groundwater of an urban part (Coimbatore region) of South India. Environ Monit Assess. 192(2):102. doi:10.1007/s10661-019-8059-y
  • Katya C, Caroline D, Susan A, Ashok JG. 2017. Factors governing the performance of bauxite in fluoride remediation of groundwater. Environ Sci Technol. 51(4):2321–2328 doi:10.1021/acs.est.6b04601
  • Kim K. 2003. Long-term disturbance of groundwater chemistry following well installation. Ground Water. 41(6):780–789. doi:10.1111/j.1745-6584.2003.tb02419.x
  • Kundu N, Panigrahi MK, Tripathy S, Munshi S, Powell MA, Hart BR. 2001. Geochemical appraisal of fluoride contamination of groundwater in Nayagarh district of Orissa, India. Environ Geol. 41(3-4):451–460. doi:10.1007/s002540100414
  • Latha SS, Ambika R, Prasad SJ. 1999. Fluoride contamination status of groundwater in Karnataka. Current Science. 76(6):730–734.
  • Li P, He S, He X, Tian R. 2018a. Seasonal hydrochemical characterization and groundwater quality delineation based on matter element extension analysis in a paper wastewater irrigation area, northwest China. Expo Health. 10(4):241–258. doi:10.1007/s12403-017-0258-6
  • Li P, He S, Yang N, Xiang G. 2018b. Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, Northwest China: implications to sustainable groundwater quality management on the Loess Plateau. Environ Earth Sci. 77(23):775. doi:10.1007/s12665-018-7968-3
  • Li P, He X, Guo W. 2019a. Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: a case study in Yan’an City on the Loess Plateau of Northwest China. Hum Ecol Risk Assess. 25(1-2):11–31. doi:10.1080/10807039.2018.1553612
  • Li P, He X, Li Y, Xiang G. 2019b. Occurrence and Health Implication of fluoride in groundwater of Loess Aquifer in the Chinese Loess Plateau: a case study of Tongchuan, Northwest China. Expo Health. 11(2):95–107. doi:10.1007/s12403-018-0278-x
  • Li P, Li X, Meng X, Li M, Zhang Y. 2016. Appraising groundwater quality and health risks from contamination in a semiarid region of Northwest China. Expo Health. 8(3):361–379. doi:10.1007/s12403-016-0205-y
  • Li P, Qian H, Wu J, Chen J, Zhang Y, Zhang H. 2014. Occurrence and hydrogeochemistry of fluoride in shallow alluvial aquifer of Weihe River, China. Environ Earth Sci. 71(7):3133–3145. doi:10.1007/s12665-013-2691-6
  • Li P, Tian R, Liu R. 2019c. Solute geochemistry and multivariate analysis of water quality in the Guohua Phosphorite Mine, Guizhou Province, China. Expo Health. 11(2):81–94. doi:10.1007/s12403-018-0277-y
  • Li P, Tian R, Xue C, Wu J. 2017. Progress, opportunities and key fields for groundwater quality research under the impacts of human activities in China with a special focus on Western China. Environ Sci Pollut Res. 24(15):13224–13234. doi:10.1007/s11356-017-8753-7
  • Mamatha P, Rao MS. 2010. Geochemistry of fluoride rich groundwater in Kolar and Tumkur districts of Karnataka. Environ Earth Sci. 61(1):131–142. doi:10.1007/s12665-009-0331-y
  • Mukherjee I, Singh UK. 2020. Fluoride abundance and their release mechanisms in groundwater along with associated human health risks in a geologically heterogeneous semi-arid region of East India. Microchem J. 152:104304. doi:10.1016/j.microc.2019.104304
  • Muralidharan D, Nair AP, Satyanarayana U. 2002. Fluoride in shallow aquifers in Rajgarh Tehsil of Churu district, Rajasthan: an arid environment. Curr Sci. 83:699–702. https://www.jstor.org/stable/24106144.
  • Nagaraju A, Balaji E, Sun LH, Thejaswi A. 2018. Processes controlling groundwater chemistry from Mulakalacheruvu Area, Chittor district, Andhra Pradesh, South India: A statistical approach based on hydrochemistry. J Geol Soc India. 91(4):425–430. doi:10.1007/s12594-018-0875-0
  • Narsimha A, Li P. 2019. Occurrence, health risks and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum Ecol Risk Assess. 25(1-2):81–103. doi:10.1080/10807039.2018.1480353
  • Narsimha A, Rajitha S. 2018. Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India. Hum Ecol Risk Assess. 24(8):2119–2132. doi:10.1080/10807039.2018.1438176
  • Narsimha A, Vasa SK, Li P. 2018. Evaluation of groundwater quality, Peddavagu in Central Telangana (PCT), South India: an insight of controlling factors of fluoride enrichment. Model Earth Syst Environ. 4(2):841–852. doi:10.1007/s40808-018-0443-z
  • Narsimha A, Sudarshan V. 2017a. Assessment of fluoride contamination in groundwater from Basara, Adilabad district, Telangana State, India. Appl Water Sci. 7(6):2717–2725. doi:10.1007/s13201-016-0489-x
  • Narsimha A, Sudarshan V. 2017b. Contamination of fluoride in groundwater and its effects on human health: A case study in hard rock aquifers of Siddipet, Telangana State, India. Appl Water Sci. 7(5):2501–2512. doi:10.1007/s13201-016-0441-0
  • Narsimha A, Venkatayogi S. 2017. Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana state, South India. Environ Earth Sci. 76:45. doi:10.1007/s12665-016-6362-2
  • Nawlakhe WG, Lutade SL, Patni PM, Deshpande LS. 1995. Groundwater quality in Shivpuri district in Madhya Pradesh. Indian J Environ Health. 37:278–284.
  • Parkhurst DL, Appelo C. 1999. User’s guide to PHREEQC (version 2) - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water Resources Investigations Report 99-4259, Washington (DC): United States Geological Survey.
  • Piper AM. 1944. A graphic procedure in the geochemical interpretation of water analyses. Trans Agu. 25:14–23. doi:10.1029/TR025i006p00914
  • Raj D, Shaji E. 2017. Fluoride contamination in groundwater resources of Alleppey, Southern India. Geosci Front. 8(1):117–124. doi:10.1016/j.gsf.2016.01.002
  • Raju NJ, Dey S, Das K. 2009. Fluoride contamination in groundwater of Sonbhadra district, Uttar Pradesh, India. Curr Sci. 96 (7):979–985.
  • Raju NJ, Dey S, Gossel W, Wycisk P. 2012. Fluoride hazard and assessment of groundwater quality in the semi-arid Upper Panda River basin, Sonbhadra district, Uttar Pradesh, India. Hydrol Sci J. 57(7):1433–1452. doi:10.1080/02626667.2012.715748
  • Rahman ZU, Khan B, Ahmada I, Mian IA, Saeed A, Afaq A, Khan A, Smith P, Mianh AA. 2018. A review of groundwater fluoride contamination in Pakisthan and assessment of the risk of fluorosis. Res Rev Fluoride. 51:171–181.
  • Ramya R, Elango L. 2018. Evaluation of geogenic and anthropogenic impacts on spatial-temporal variation in quality of surface water and groundwater along Cauvery River, India. Environ Earth Sci. 77(1):2. doi:10.1007/s12665-017-7176-6
  • Rao PN, Rao AD, Bhargav JS, Siva Sankar K, Sudarshan G. 2014. Regional appraisal of the fluoride occurrence in groundwaters of Andhra Pradesh. J Geol Soc India. 84(4):483–493. doi:10.1007/s12594-014-0154-7
  • Ravindra K, Garg VK. 2007. Hydrochemical survey of groundwater of Hisar city and assessment of defluoridation methods used in India. Environ Monit Assess. 132(1-3):33–43. doi:10.1007/s10661-006-9500-6
  • Ray D, Rao RR, Bhoi AV, Biswas AK, Ganguly AK, Sanyal PI. 2000. Physico-chemical quality of drinking water in Rohtas district of Bihar. Environ Monit Assess. 61(3):387–398. doi:10.1023/A:1006165615097
  • Reddy AGS, Reddy DV, Rao PN, Prasad KMD. 2010b. Hydrogeochemical characterization of fluoride rich groundwater of wailpalli watershed, Nalgonda district, Andhra Pradesh. Environ Monit Assess. 171(1-4):561–577. doi:10.1007/s10661-009-1300-3
  • Reddy DV, Nagabhushanam P, Sukhija BS, Reddy AGS, Smedley PL. 2010a. Fluoride dynamics in the granitic aquifer of Wailpally watershed, Nalgonda district, India. Chem Geol. 269(3-4):278–289. doi:10.1016/j.chemgeo.2009.10.003
  • Saxena VS, Ahmed S. 2003. Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol. 43(6):731–736. doi:10.1007/s00254-002-0672-2
  • Schoeller H. 1965. Qualitative evaluation of groundwater resources. In: Scholler H, editor. Methods and techniques of Groudwater investigations and development. Paris: UNESCO. p. 54–83.
  • Schoeller H. 1967. Geochemistry of groundwater. An international guide for research and practice, chap. 15. Paris: UNESCO. p. 1–18.
  • Shaji E, Viju J, Thambi DS. 2007. High fluoride in groundwater of Palghat district, Kerala. Curr Sci. 92:240–245.
  • Shortt HE, McRobert GR, Barnard TW, Mannadinayer AS. 1937. Endemic fluorosis in Madras Presidency, India. Indian J Med Res. 25:553–561.
  • Singh CK, Rina K, Singh RP, Shashtri S, Kamal V, Mukherjee S. 2011. Geochemical modeling of high fluoride concentration in groundwater of Pokhran area of Rajasthan, India. Bull Environ Contam Toxicol. 86(2):152–158. doi:10.1007/s00128-011-0192-4
  • Sreedevi PD, Ahmed S, Made B, Ledoux E, Gandolfi JM. 2006. Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India. Environ Geol. 50(1):1–11. doi:10.1007/s00254-005-0167-z
  • Su C, Wang Y, Xie X, Li J. 2013. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China. J Geochem Explor. 135:79–92. doi:10.1016/j.gexplo.2012.09.003
  • Subba Rao N. 2003. Groundwater quality: focus on fluoride concentration in rural parts of Guntur district, Andhra Pradesh, India. Hydrol Sci J. 48(5):835–847. doi:10.1623/hysj.48.5.835.51449
  • Subba Rao N, John Devadas D. 2003. Fluoride incidence in groundwater in an area of Peninsular India. Environ Geol. 45(2):243–251. doi:10.1007/s00254-003-0873-3
  • Subba Rao N. 2011. High-fluoride groundwater. Environ Monit Assess. 176(1-4):637–645. doi:10.1007/s10661-010-1609-y
  • Subba Rao N. 2017a. Controlling factors of fluoride in groundwater in a part of south India. Arab J Geosci. 10(23):524. doi:10.1007/s12517-017-3291-7
  • Subba Rao N. 2017b. Hydrogeology: Problems with solutions. New Delhi: Prentice Hall of India.
  • Subba Rao N, Chaudhary M. 2019. Hydrogeochemical processes regulating the spatial distribution of groundwater contamination, using pollution index of groundwater (PIG) and hierarchical cluster analysis (HCA): a case study. Groundw Sustain Dev. 9:100238. doi:10.1016/j.gsd.2019.100238
  • Sujatha D. 2003. Fluoride levels in the groundwater of the south-eastern part of Ranga Reddy district, Andhra Pradesh, India. Environ Geol. 44(5):587–591. doi:10.1007/s00254-003-0795-0
  • Subba Rao N, Dinakar A, Surya Rao P, Rao PN, Madhnure P, Prasad KM, Sudarshan G. 2016. Geochemical processes controlling fluoride-bearing groundwater in the granitic aquifer of a semi-arid region. J Geol Soc India. 88(3):350–356. doi:10.1007/s12594-016-0497-3
  • Susheela AK. Bhatnagar M, Kumar A. 1996. Status of drinking water in the mega city Delhi. In: Pickford J. (eds). Reaching the unreached: challenges for the 21st century. Proceedings of the 22nd WEDC Conference, New Delhi, India, 9-13 September, 1996, pp. 299–301.
  • Subba Rao N, Marghade D, Dinakar A, Chandana I, Sunitha B, Ravindra B, Balaji T. 2017a. Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India. Environ Earth Sci. 76(21):747. doi:10.1007/s12665-017-7093-8
  • Subba Rao N, Srihari C, Deepthi Spandana B, Sravanthi M, Kamalesh T, Jayadeep A. 2019a. Comprehensive understanding of groundwater quality and hydrogeochemistry for the sustainable development of sub-urban area of Visakhapatnam, Andhra Pradesh, India. Hum Ecol Risk Assess. 25:52–80. doi:10.1080/10807039.2019.1571403
  • Subba Rao N, Subrahmanyam A, Babu Rao G. 2013. Fluoride-bearing groundwater in Gummanampadu Sub-basin, Guntur district, Andhra Pradesh, India. Environ Earth Sci. 70(2):575–586. doi:10.1007/s12665-012-2142-9
  • Subba Rao N, Subrahmanyam A, Ravi Kumar S, Srinivasulu N, Babu Rao G, Surya Rao P, Venkatram Reddy G. 2012a. Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur district, Andhra Pradesh, India. Environ Earth Sci. 67(5):1451–1471. doi:10.1007/s12665-012-1590-6
  • Subba Rao N, Sunitha B, Adimalla N, Chaudhary M. 2020. Quality criteria for groundwater use from a rural part of Wanaparthy District, Telangana State, India, through ionic spatial distribution (ISD), entropy water quality index (EWQI) and principal component analysis (PCA). Environ Geochem Health. 42(2):579–599. doi:10.1007/s10653-019-00393-5
  • Subba Rao N, Sunitha B, Sun L, Deepthi Spandana B, Chaudhary M. 2019b. Mechanisms controlling groundwater chemistry and assessment of potential health risk: a case study from South India. Geochemistry. doi:10.1016/j.chemer.2019.125568
  • Subba Rao N, Surya Rao P, Dinakar A, Nageswara Rao PV, Deepali M. 2017b. Fluoride occurrence in the groundwater in a coastal region of Andhra Pradesh, India. Appl Water Sci. 7:1467–1478. doi:10.1007/s13201-015-0338-3
  • Subba Rao N, Surya Rao P, Venkatram Reddy G, Nagamani M, Vidyasagar G, Satyanarayana N. 2012b. Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River basin, Visakhapatnam district, Andhra Pradesh, India. Environ Monit Assess. 184:5189. doi:10.1007/s10661-011-2333-y
  • Tiwari AK, Maio MD, Singh PK, Singh AK. 2016. Hydrogeochemical characterization and groundwater quality assessment in coal mining area, India. Arab J Geosci. 9(3):177. doi:10.1007/s12517-015-2209-5
  • USEPA. 1980. Exposure and risk assessment for zinc. US Environmental Protection Agency Office of Water Regulations and Standards (WH-553). EPA440481016. PB85212009.
  • USEPA. 1991. Risk assessment guidance for superfund, Vol 1: human health evaluation manual (Part B, development of risk-based preliminary remediation goals). Washington (DC): Office of Emergency and Remedial Response. EPA-9585.7-01B.
  • USEPA. 1993. Wellhead protection: a guide for small communities. Washington (DC): Office of Research and Development Office of Water. EPA/625/R-93/002.
  • USEPA. 2006. USEPA region III Risk-based concentration table: technical background information. Washington (DC): United States Environmental protection Agency.
  • USEPA. 2014. Human health evaluation of manual, supplemental guidance: update of standard default exposure factors, OSWER Directive 9200.1-120. Washington (DC): United States Environmental protection Agency.
  • Vikas C. 2009. Occurrence and distribution of fluoride in groundwater of central Rajasthan, India. J Environ Sci Eng. 51(3):169–174.
  • Vithanage M, Bhattacharya P. 2015. Fluoride in the environment: sources, distribution and defluoridation. Environ Chem Lett. 13(2):131–147. doi:10.1007/s10311-015-0496-4
  • Wang D, Wu J, Wang Y, Ji Y. 2019. Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu County of Sichuan Province, China: analysis, assessment and management. Expo Health. doi:10.1007/s12403-019-00314-y
  • Wedepohl KH. 1969. Handbook of geochemistry. Vol II-1, Berlin: Springer.
  • WHO. 2011. Guidelines for drinking water quality. Geneva: World Health Organization.
  • Wodeyar BK, Sreenivasan G. 1996. Occurrence of fluoride in the groundwaters and its impact in Peddavankahalla basin, Bellary District, Karnataka—A preliminary study. Current Science. 70(1):71–74.
  • Wu J, Li P, Qian H. 2015. Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations. Environ Earth Sci. 73(12):8575–8588. doi:10.1007/s12665-015-4018-2
  • Wu J, Sun Z. 2016. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health. 8(3):311–329. doi:10.1007/s12403-015-0170-x
  • Wu J, Zhang Y, Zhou H. 2020. Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of Northwest China. Geochemistry. doi:10.1016/j.chemer.2020.125607
  • Wu J, Zhou H, He S, Zhang Y. 2019. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau. Environ Earth Sci. 78(15):446. doi:10.1007/s12665-019-8471-1
  • Yuan L, Fei W, Jia F, Jun-Ping L, Qi L, Fang-Ru N, Xu-Dong L, Shu-Lian X. 2020. Health risk in children to fluoride exposure in a typical endemic fluorosis area on Loess Plateau, North China, in the last decade. Chemosphere. 243:125451. doi:10.1016/j.chemosphere.2019.125451
  • Zhang CS, McGrath D. 2004. Geostatistical and GIS analyses on soil organic carbon concentrations grassland of southeastern Ireland from two different periods. Geoderma. 119(3-4):261–275. doi:10.1016/j.geoderma.2003.08.004
  • Zhang Y, Wu J, Xu B. 2018. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest china. Environ Earth Sci. 77(7):273. doi:10.1007/s12665-018-7456-9
  • Zhou Y, Li P, Xue L, Dong Z, Li D. 2020. Solute geochemistry and groundwater quality for drinking and irrigation purposes: a case study in Xinle City, North China. Geochemistry. doi:10.1016/j.chemer.2020.125609

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.