373
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Assessment of groundwater geochemistry and human health risk of an intensively cropped alluvial plain, NW Italy

, , &
Pages 825-845 | Received 18 Mar 2020, Accepted 26 May 2020, Published online: 11 Jun 2020

References

  • Abu-Alnaeem MF, Yusoff I, Ng TF, Alias Y, Raksmey M. 2018. Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: an integrated statistical, geostatistical and hydrogeochemical approaches study. Sci Total Environ. 615:972–989. doi:10.1016/j.scitotenv.2017.09.320
  • Aeschbach-Hertig W, Gleeson T. 2012. Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci. 5(12):853–861. doi:10.1038/ngeo1617
  • Ahamad A, Raju NJ, Madhav S, et al. 2020. Trace elements contamination in groundwater and associated human health risk in the industrial region of southern Sonbhadra, Uttar Pradesh, India. Environ Geochem Health. doi:10.1007/s10653-020-00582-7
  • Aiuppa A, Bellomo S, Brusca L, D'Alessandro W, Federico C. 2003. Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Appl Geochem. 18(6):863–882. doi:10.1016/S0883-2927(02)00182-8
  • Bonsignore G, Bortolami GC, Elter G, et al. 1969. Note illustrative della Carta geologica d’Italia alla scala 1:100,000, Fogli n. 56–57 Torino-Vercelli (Explanatory notes of the geological map of Italy at 1: 100,000 scale, Foglio n. 56–57 Turin-Vercelli). Servizio Geologico d’Italia. Poligrafica & Cartevalori, Ercolano (Napoli). pp. 1–96.
  • Bove A, Destefanis E, De Luca DA, et al. 2004. Studio idrogeologico finalizzato alla caratterizzazione dell’acquifero superficiale nel territorio di pianura della Provincia di Vercelli. Università degli Studi di Torino - Dipartimento di Scienze della Terra. http://hdl.handle.net/2318/34857
  • Brunetti E, Trezzi A, Caielli G. 2014. An innovative technique for the in situ treatment of hexavalent chromium within unsaturated soils. In: Flowpath 2014—National Meeting on Hydrogeology, Viterbo Italy, pp. 12–13.
  • Busico G, Cuoco E, Kazakis N, Colombani N, Mastrocicco M, Tedesco D, Voudouris K. 2018. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy. Environ Pollut. 234:260–269. doi:10.1016/j.envpol.2017.11.053
  • Capri E, Civita M, Corniello A, Cusimano G, De Maio M, Ducci D, Fait G, Fiorucci A, Hauser S, Pisciotta A, et al. 2009. Assessment of nitrate contamination risk: the Italian experience. J Geochem Explor. 102 (2):71–86. doi:10.1016/j.gexplo.2009.02.006
  • Cerling TE, Pederson BL, Damm KLV. 1989. Sodium-calcium ion exchange in the weathering of shales: implication for global weathering budgets. Geology. 17(6):552–554. doi:10.1130/0091-7613(1989)017<0552:SCIEIT>2.3.CO;2
  • Cidu R, Biddau R, Fanfani L. 2009. Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). J Geochem Explor. 100(2-3):125–132. doi:10.1016/j.gexplo.2008.02.003
  • Civita M, Fisso G, Governa ME, et al. 1990. Schema idrogeologico, qualità e vulnerabilità degli acquiferi della pianura vercellese. Provincia di Vercelli - Settore Assetto Ambientale, Gruppo Nazionale per la difesa dalle catastrofi idrogeologiche del C.N.R. - Unità Operativa 4-1, p. 31.
  • Clarke KC. 1995. Analytical and computer cartography. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall.
  • D’Ippoliti D, Santelli E, De Sario M, Scortichini M, Davoli M, Michelozzi P. 2015. Arsenic in drinking water and mortality for cancer and chronic diseases in Central Italy, 1990-2010. PLoS One. 10(9):e0138182. doi:10.1371/journal.pone.0138182
  • Debernardi L, De Luca DA, Lasagna M. 2008. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability. Environ Geol. 55(3):539–558. doi:10.1007/s00254-007-1006-1
  • De Luca DA, Lasagna M, Gisolo A, Morelli di Popolo e Ticineto A, Falco M, Cuzzi C. 2019. Potential recharge areas of deep aquifers: an application to the Vercelli–Biella Plain (NW Italy). Rend Fis Acc Lincei. 30(1):137–153. doi:10.1007/s12210-019-00782-z
  • De Miguel E, Iribarren I, Chacón E, Ordoñez A, Charlesworth S. 2007. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere. 66(3):505–513. doi:10.1016/j.chemosphere.2006.05.065
  • Di HJ, Cameron KC. 2002. Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr Cycl Agroecosys. 64(3):237–256. doi:10.1023/A:1021471531188
  • Edet AE, Offiong OE. 2002. Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal. 57(4):295–304. doi:10.1023/B:GEJO.0000007250.92458.de
  • Enitan-Folami AM, Mutileni N, Odiyo JO, Swalaha FM, Edokpayi JN. 2019. Hydrochemical, bacteriological assessment, and classification of groundwater quality in Thulamela Municipality, South Africa: potential health risk. Hum Ecol Risk Assess. 1–15. doi:10.1080/10807039.2019.1644153
  • European Union (EU). 2006. Directiva 2006/118/CE del Parlamento Europeo y del Consejo de 12 de Diciembre de 2006. Diario Oficial de las Comunidades Europeas de 27/12/2006. L 327/19–327/31.
  • European Union-Water Framework Directive (EU-WFD). 2000. Directiva 2000/60/CE del Parlamento Europeo y del Consejo de 23 de Octubre de 2000. Diario Oficial de las Comunidades Europeas de 22/12/2000. L 327/1–327/32.
  • Fisher RS, Mullican WF. 1997. Hydrochemical evolution of sodium sulphate and sodium chloride groundwater beneath the Northern Chihuahuan desert, Trans-Pecos, Texas, USA. Hydrogeol J. 5(2):4–16. doi:10.1007/s100400050102
  • Ghiglieri G, Barbieri G, Vernier A, Carletti A, Demurtas N, Pinna R, Pittalis D. 2009. Potential risks of nitrate pollution in aquifers from agricultural practices in the Nurra region, northwestern Sardinia, Italy. J Hydrol. 379(3-4):339–350. doi:10.1016/j.jhydrol.2009.10.020
  • Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science. 170(3962):1088–1090. doi:10.1126/science.170.3962.1088
  • Giménez-Forcada E, Bencini A, Pranzini G. 2010. Hydrogeochemical considerations about the origin of groundwater salinization in some coastal plains of Elba Island (Tuscany, Italy). Environ Geochem Health. 32(3):243–257. doi:10.1007/s10653-009-9281-2
  • Giraudi C. 2014. Quaternary studies as a tool to validate seismic hazard potential of tectonic structures: the case of the monferrato thrust front (Vercelli plain, nw Italy). Alp Mediterr Quat. 27(1):5–28.
  • Giri S, Singh AK. 2014. Assessment of surface water quality using heavy metal pollution index in Subarnarekha River. Water Qual Expo Health. 5(4):173–182. doi:10.1007/s12403-013-0106-2
  • Giri S, Singh AK. 2015. Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environ Monit Assess. 187(3):1–14. doi:10.1007/s10661-015-4265-4
  • Grassi S, Netti R. 2000. Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany—Italy). J Hydrol. 237(3-4):198–211. doi:10.1016/S0022-1694(00)00307-3
  • Hopke PK, Lamb RE, Natusch DFS. 1980. Multielemental characterisation of urban roadway dust. Environ Sci Technol. 14(2):164–172. doi:10.1021/es60162a006
  • Huang G, Sun J, Zhang Y, Chen Z, Liu F. 2013. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci Total Environ. 463-464:209–221. doi:10.1016/j.scitotenv.2013.05.078
  • Katz BG, Coplen TB, Bullen TD, Davis JH. 1997. Use of chemical and isotopic tracers to characterize the interaction between groundwater and surface water in mantled Karst. Groundwater. 35(6):1014–1028. doi:10.1111/j.1745-6584.1997.tb00174.x
  • Kennedy P, Gadd J. 2000. Preliminary examination of inorganic compounds present in tyres, brake pads and road bitumen in New Zealand. Prepared by the Ministry of Transport by Kingett Mitchell Limited. Mitchell Limited
  • Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupfersberger H, Kvaerner J, Muotka T, Mykrä H, Preda E, Rossi P, et al. 2014. Climate change impacts on groundwater and dependent ecosystems. J Hydrol. 518:250–266. doi:10.1016/j.jhydrol.2013.06.037
  • Kulabako NR, Nalubega M, Thunvik R. 2007. Study of the impact of land use and hydrogeological settings on the shallow groundwater quality in a peri-urban area of Kampala, Uganda. Sci Total Environ. 381(1-3):180–199. doi:10.1016/j.scitotenv.2007.03.035
  • Kuldip-Singh Hundal, Dhanwinder-Singh HS. 2011. Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda district of Punjab, northwest India. Environ Earth Sci. 64(7):1823–1833. doi:10.1007/s12665-011-0989-9.
  • Lelli M, Grassi S, Amadori M, Franceschini F. 2014. Natural Cr (VI) contamination of groundwater in the Cecina coastal area and its inner sectors (Tuscany, Italy). Environ Earth Sci. 71(9):3907–3919. doi:10.1007/s12665-013-2776-2
  • Mayo AL, Loucks MD. 1995. Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. J Hydrol. 172(1-4):31–59. doi:10.1016/0022-1694(95)02748-E
  • Mohan SV, Nithila P, Reddy SJ. 1996. Estimation of heavy metal in drinking water and development of heavy metal pollution index. J Environ Sci Health A. 31(2):283–289. doi:10.1080/10934529609376357
  • Morán-Ramírez J, Ledesma-Ruiz R, Mahlknecht J, Ramos-Leal JA. 2016. Rock–water interactions and pollution processes in the volcanic aquifer system of Guadalajara, Mexico, using inverse geochemical modeling. Appl Geochem. 68:79–94. doi:10.1016/j.apgeochem.2016.03.008
  • Morgenstern U, Daughney CJ. 2012. Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification–The National Groundwater Monitoring Programme of New Zealand. J Hydrol. 456-457:79–93. doi:10.1016/j.jhydrol.2012.06.010
  • Mukate S, Panaskar D, Wagh V, Muley A, Jangam C, Pawar R. 2018. Impact of anthropogenic inputs on water quality in Chincholi industrial area of Solapur, Maharashtra, India. Groundw Sustain Dev. 7:359–371. doi:10.1016/j.gsd.2017.11.001
  • Nas B, Berktay A. 2010. Groundwater quality mapping in urban groundwater using GIS. Environ Monit Assess. 160(1-4):215–227. doi:10.1007/s10661-008-0689-4
  • Paladino O, Massabò M. 2017. Health risk assessment as an approach to manage an old landfill and to propose integrated solid waste treatment: a case study in Italy. Waste Manage. 68:344–354. doi:10.1016/j.wasman.2017.07.021
  • Paladino O, Seyedsalehi M, Massabò M. 2018. Probabilistic risk assessment of nitrate groundwater contamination from greenhouses in Albenga plain (Liguria, Italy) using lysimeters. Sci Total Environ. 634:427–438. doi:10.1016/j.scitotenv.2018.03.320
  • Piper AM. 1944. A graphical procedure in the geochemical interpretation of water analysis. Trans Agu. 25(6):914–928. doi:10.1029/TR025i006p00914
  • Pisciotta A, Cusimano G, Favara R. 2015. Groundwater nitrate risk assessment using intrinsic vulnerability methods: A comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italy. J Geochem Explor. 156:89–100. doi:10.1016/j.gexplo.2015.05.002
  • Prasad B, Bose JM. 2001. Evaluation of heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environ Geol. 41(1-2):183–188. doi:10.1007/s002540100380
  • Qiu H, Gui H. 2019. Heavy metals contamination in shallow groundwater of a coal-mining district and a probabilistic assessment of its human health risk. Hum Ecol Risk Assess. 25(3):548–563. doi:10.1080/10807039.2018.1562883
  • Rajmohan N, Elango L. 2004. Identifcation and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol. 46(1):47–61. doi:10.1007/s00254-004-1012-5
  • Rajmohan N, Elango L. 2005. Distribution of iron, manganese, zinc and atrazine in groundwater in parts of Palar and Cheyyar river basins, South India. Environ Monit Assess. 107(1-3):115–131. doi:10.1007/s10661-005-5307-0
  • Reddy SJ. 1995. Encyclopaedia of environmental pollution and control. Vol. 1. India: Environmental Media Karlia. p. 342.
  • Riva F, Castiglioni S, Fattore E, Manenti A, Davoli E, Zuccato E. 2018. Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. Int J Hyg Environ Health. 221(3):451–457. doi:10.1016/j.ijheh.2018.01.008
  • Sappa G, Ergul S, Ferranti F. 2014a. Geochemical modeling and multivariate statistical evaluation of trace elements in arsenic contaminated groundwater systems of Viterbo Area, (Central Italy). Springerplus. 3(1):237doi:10.1186/2193-1801-3-237
  • Sappa G, Ergul S, Ferranti F. 2014b. Water quality assessment of carbonate aquifers in southern Latium region, Central Italy: a case study for irrigation and drinking purposes. Appl Water Sci. 4(2):115–128. doi:10.1007/s13201-013-0135-9
  • Sar SK, Diwan V, Biswas S, Singh S, Sahu M, Jindal MK, Arora A. 2018. Study of uranium level in groundwater of Balod district of Chhattisgarh state, India and assessment of health risk. Hum Ecol Risk Assess. 24(3):691–698. doi:10.1080/10807039.2017.1397498
  • Schoeller H. 1965. Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigations and development (pp. 54–83). UNESCO
  • Schoeller H. 1977. Geochemistry of groundwater. In Brown, RH, Konoplyantsev, AA, Ineson, J, and Kovalevsky, VS (eds), Groundwater studies—an international guide for research and practice. Ch. 15. Paris: UNESCO, pp. 1–18.
  • Selvakumar S, Chandrasekar N, Kumar G. 2017. Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resour Indus. 17:26–33. doi:10.1016/j.wri.2017.02.002
  • Serio F, Miglietta PP, Lamastra L, Ficocelli S, Intini F, De Leo F, De Donno A. 2018. Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in Southern Apulia Region (Italy). Sci Total Environ. 645:1425–1431. doi:10.1016/j.scitotenv.2018.07.241
  • Singh S, Singh C, Mukherjee S. 2010. Impact of land-use and land-cover change on groundwater quality in the Lower Shiwalik hills: a remote sensing and GIS based approach. Open Geosci. 2(2):124–131.
  • Singh SK, Srivastava PK, Singh D, Han D, Gautam SK, Pandey AC. 2015. Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: a case study of Allahabad district, India. Environ Geochem Health. 37(1):157–180. doi:10.1007/s10653-014-9638-z
  • Srinivasamoorthy K, Gopinath M, Chidambaram S, Vasanthavigar M, Sarma VS. 2014. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. J King Saud Univ Sci. 26(1):37–52. doi:10.1016/j.jksus.2013.08.001
  • Subba Rao N, Srihari C, Deepthi Spandana B, Sravanthi M, Kamalesh T, Abraham Jayadeep V. 2019. Comprehensive understanding of groundwater quality and hydrogeochemistry for the sustainable development of suburban area of Visakhapatnam, Andhra Pradesh, India. Hum Ecol Risk Assess. 25(1-2):52–80. doi:10.1080/10807039.2019.1571403
  • Tiwari AK, De Maio M. 2017. Assessment of risk to human health due to intake of chromium in the groundwater of the Aosta Valley region, Italy. Hum Ecol Risk Assess. 23(5):1153–1163. doi:10.1080/10807039.2017.1308813
  • Tiwari AK, Orioli S, De Maio M. 2019b. Assessment of groundwater geochemistry and diffusion of hexavalent chromium contamination in an industrial town of Italy. J Contam Hydrol. 225:103503. doi:10.1016/j.jconhyd.2019.103503
  • Tiwari AK, Pisciotta A, De Maio M. 2019a. Evaluation of groundwater salinization and pollution level on Favignana Island, Italy. Environ Pollut. 249:969–981. doi:10.1016/j.envpol.2019.03.016
  • Tsihrintzis VA, Hamid R, Fuentes HR. 1996. Use of geographic information systems (GIS) in water resources: a review. Water Resour Manage. 10(4):251–277. doi:10.1007/BF00508896
  • USEPA (US Environmental Protection Agency) 1989. Risk assessment guidance for superfund volume I: human health evaluation manual (part A) interim final. Washington, DC: U.S. Environmental Protection Agency.
  • USEPA (US Environmental Protection Agency) 2004. Risk assessment guidance for superfund volume I: human health evaluation manual (part E, supplemental guidance for dermal risk assessment) final. Washington, DC: Office of Superfund Remediation and Technology Innovation. EPA/540/R/99/005 OSWER 9285.7-02EP PB99-963312 July 2004.
  • USEPA IRIS (US Environmental Protection Agency’s Integrated Risk Information System) 2011. http://www.epa.gov/iris/ [accessed 2011 Jan 15].
  • Vengosh A, Coyte R, Karr J, Harkness JS, Kondash AJ, Ruhl LS, Merola RB, Dywer GS. 2016. Origin of hexavalent chromium in drinking water wells from the piedmont aquifers of North Carolina. Environ Sci Technol Lett. 3(12):409–414. doi:10.1021/acs.estlett.6b00342
  • WHO. 2017. Guidelines for drinking-water quality. 4th ed. Incorporating the 1st Addendum. Geneva: World Health Organization. http://apps.who.int/iris/bitstream/handle/0665/254637/9789241549950-eng.pdf?sequence=1.
  • Wu B, Zhao DY, Jia HY, Zhang Y, Zhang XX, Cheng SP. 2009. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bull Environ Contam Toxicol. 82(4):405–409. doi:10.1007/s00128-008-9497-3
  • Wu J, Sun Z. 2016. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health. 8(3):311–329. doi:10.1007/s12403-015-0170-x
  • Zaidi FK, Nazzal Y, Jafri MK, Naeem M, Ahmed I. 2015. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia. Environ Monit Assess. 187(10):607. doi:10.1007/s10661-015-4828-4
  • Zavattaro L, Romani M, Sacco D, Bassanino M, Grignani C. 2006. Fertilization management of paddy fields in Piedmont (NW Italy) and its effects on the soil and water quality. Paddy Water Environ. 4(1):61–66. doi:10.1007/s10333-005-0029-z
  • Zhao Y, De Maio M, Suozzi E. 2013. Assessment of groundwater potential risk by agricultural activities, in North Italy. Int J Environ Sci Dev. 4:286–290. doi:10.7763/IJESD.2013.V4.355

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.