1,199
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Analyzing human error contributions to maritime environmental risk in oil/chemical tanker ship

, , ORCID Icon & ORCID Icon
Pages 1838-1859 | Received 18 Feb 2021, Accepted 25 Mar 2021, Published online: 06 May 2021

References

  • Afenyo M, Khan F, Veitch B, Yang M. 2017. A probabilistic ecological risk model for Arctic marine oil spills. J Environ Chem Eng. 5(2):1494–1503. doi:10.1016/j.jece.2017.02.021
  • Akyuz E. 2015. Quantification of human error probability towards the gas inerting process on-board crude oil tankers. Saf Sci. 80:77–86. doi:10.1016/j.ssci.2015.07.018
  • Akyuz E. 2017. A marine accident analysing model to evaluate potential operational causes in cargo ships. Saf Sci. 92:17–25. doi:10.1016/j.ssci.2016.09.010
  • Akyuz E, Arslan O, Turan O. 2020. Application of fuzzy logic to fault tree and event tree analysis of the risk for cargo liquefaction on board ship. Appl Ocean Res. 101:102238. doi:10.1016/j.apor.2020.102238
  • Akyuz E, Celik M. 2016. A hybrid human error probability determination approach: the case of cargo loading operation in oil/chemical tanker ship. J Loss Prev Process Ind. 43:424–431. doi:10.1016/j.jlp.2016.06.020
  • Akyuz E, Celik E. 2018a. A quantitative risk analysis by using interval type-2 fuzzy FMEA approach: the case of oil spill. Marit Policy Manage. 45(8):979–994. doi:10.1080/03088839.2018.1520401
  • Akyuz E, Celik E. 2018b. The role of human factor in maritime environment risk assessment: a practical application on Ballast Water Treatment (BWT) system in ship. Hum Ecol Risk Assess Int J. 24(3):653–666. doi:10.1080/10807039.2017.1396184
  • Antao P, Soares CG. 2006. Fault-tree models of accident scenarios of RoPax vessels. Int J Autom Comput. 3:107–116.
  • Apostolakis GE, Bier VM, Mosleh A. 1988. A critique of recent models for human error rate assessment. Reliab Eng Syst Saf. 22(1-4):201–217. doi:10.1016/0951-8320(88)90074-9
  • Arici SS, Akyuz E, Arslan O. 2020. Application of fuzzy bow-tie risk analysis to maritime transportation: the case of ship collision during the STS operation. Ocean Eng. 217:107960. doi:10.1016/j.oceaneng.2020.107960
  • Arslan O. 2009. Quantitative evaluation of precautions on chemical tanker operations. Process Saf Environ Protect. 87(2):113–120. doi:10.1016/j.psep.2008.06.006
  • Arslan O, Er ID. 2008. SWOT analysis for safer carriage of bulk liquid chemicals in tankers. J Hazard Mater. 154(1-3):901–913. doi:10.1016/j.jhazmat.2007.10.113
  • Cheliyan A, Bhattacharyya S. 2018. Fuzzy fault tree analysis of oil and gas leakage in subsea production systems. J Ocean Eng Sci. 3(1):38–48. doi:10.1016/j.joes.2017.11.005
  • Fan S, Zhang J, Blanco-Davis E, Yang Z, Yan X. 2020. Maritime accident prevention strategy formulation from a human factor perspective using Bayesian Networks and TOPSIS. Ocean Eng. 210(107544):107544. doi:10.1016/j.oceaneng.2020.107544
  • Graziano A, Teixeira AP, Soares CG. 2016. Classification of human errors in grounding and collision accidents using the TRACEr taxonomy. Saf Sci. 86:245–257. doi:10.1016/j.ssci.2016.02.026
  • Gul M, Ak MF, Guneri AF. 2017. Occupational health and safety risk assessment in hospitals: a case study using two-stage fuzzy multi-criteria approach. Hum Ecol Risk Assess Int J. 23(2):187–202. doi:10.1080/10807039.2016.1234363
  • He X, Wang Y, Shen Z, Huang X. 2008. A simplified CREAM prospective quantification process and its application. Reliab Eng Syst Saf. 93(2):298–306. doi:10.1016/j.ress.2006.10.026
  • Hollnagel E. 1993. Human reliability analysis: context and control. London: Academic Press.
  • Hollnagel E. 1998. Cognitive reliability and error analysis method. Amsterdam: Elsevier.
  • Hsu HM, Chen CT. 1994. Fuzzy hierarchical weight analysis model for multicriteria decision problem. J Chin Inst Ind Eng. 11(3):126–136.
  • Hu J, Zhang L, Wang Q, Tian B. 2019. A structured hazard identification method of human error for shale gas fracturing operation. Hum Ecol Risk Assess Int J. 25(5):1189–1206. doi:10.1080/10807039.2018.1461008
  • IMO. 2020. International convention for the prevention of pollution from ships (MARPOL). London: IMO.
  • Islam R, Abbassi R, Garaniya V, Khan FI. 2016. Determination of human error probabilities for the maintenance operations of marine engines. J Ship Prod Des. 32(04):226–234. doi:10.5957/jspd.2016.32.4.226
  • Johannsdottir L, Cook D. 2019. Systemic risk of maritime-related oil spills viewed from an Arctic and insurance perspective. Ocean Coast Manage. 179:104853. doi:10.1016/j.ocecoaman.2019.104853
  • Khan FI, Abbasi SA. 2000. Analytical simulation and PROFAT II: a new methodology.
  • Kuzu AC, Akyuz E, Arslan O. 2019. Application of fuzzy fault tree analysis (FFTA) to maritime industry: a risk analysing of ship mooring operation. Ocean Eng. 179:128–134. doi:10.1016/j.oceaneng.2019.03.029
  • Lavasani SM, Ramzali N, Sabzalipour F, Akyuz E. 2015. Utilisation of fuzzy fault tree analysis (FFTA) for quantified risk analysis of leakage in abandoned oil and natural-gas wells. Ocean Eng. 108:729–737. doi:10.1016/j.oceaneng.2015.09.008
  • Liang G-S, Wang M-JJ. 1993. Fuzzy fault-tree analysis using failure possibility. Microelectron Reliab. 33(4):583–597. doi:10.1016/0026-2714(93)90326-T
  • Marques WC, Stringari CE, Kirinus EP, Möller OO, Jr, Toldo EE, Jr, Andrade MM. 2017. Numerical modeling of the Tramandaí beach oil spill, Brazil—case study for January 2012 event. Appl Ocean Res. 65:178–191. doi:10.1016/j.apor.2017.04.007
  • Mukherjee S. 2019. Introduction to tectonics and structural geology: Indian context. Germany: Springer.
  • Noroozi A, Khan F, MacKinnon S, Amyotte P, Deacon T. 2014. Determination of human error probabilities in maintenance procedures of a pump. Process Saf Environ Protect. 92(2):131–141. doi:10.1016/j.psep.2012.11.003
  • Onisawa T. 1990. An application of fuzzy concepts to modelling of reliability analysis. Fuzzy Set Syst. 37(3):267–286. doi:10.1016/0165-0114(90)90026-3
  • Rajakarunakaran S, Kumar AM, Prabhu VA. 2015. Applications of fuzzy faulty tree analysis and expert elicitation for evaluation of risks in LPG refuelling station. J Loss Prev Process Ind. 33:109–123. doi:10.1016/j.jlp.2014.11.016
  • Ramamoorthy S, Springthorpe S, Kushner D. 1977. Competition for mercury between river sediment and bacteria. Bull Environ Contam Toxicol. 17(5):505–511. doi:10.1007/BF01685971
  • Rozuhan H, Muhammad M, Niazi UM. 2020. Probabilistic risk assessment of offshore installation hydrocarbon releases leading to fire and explosion, incorporating system and human reliability analysis. Appl Ocean Res. 101(102282):102282. doi:10.1016/j.apor.2020.102282
  • Şakar C, Zorba Y. 2017. A study on safety and risk assessment of dangerous cargo operations in oil/chemical tankers. J ETA Maritime Sci. 5(4):396–413. doi:10.5505/jems.2017.09226
  • Salihoglu E, Beşikçi EB. 2021. The use of functional resonance analysis method (FRAM) in a maritime accident: a case study of Prestige. Ocean Eng. 219:108223. doi:10.1016/j.oceaneng.2020.108223
  • Sarıalioğlu S, Uğurlu Ö, Aydın M, Vardar B, Wang J. 2020. A hybrid model for human-factor analysis of engine-room fires on ships: HFACS-PV&FFTA. Ocean Eng. 217:107992. doi:10.1016/j.oceaneng.2020.107992
  • Shafiee M, Enjema E, Kolios A. 2019. An integrated FTA-FMEA model for risk analysis of engineering systems: a case study of subsea blowout preventers. Appl Sci. 9(6):1192. doi:10.3390/app9061192
  • Sormunen O-VE, Goerlandt F, Häkkinen J, Posti A, Hänninen M, Montewka J, Ståhlberg K, Kujala P. 2015. Uncertainty in maritime risk analysis: extended case study on chemical tanker collisions. Proc IMECHE. 229(3):303–320. doi:10.1177/1475090213515640
  • Sugeno M. 1985. Industrial applications of fuzzy control. Netherland: Elsevier Science Inc.
  • Trucco P, Cagno E, Ruggeri F, Grande O. 2008. A Bayesian belief network modelling of organisational factors in risk analysis: a case study in maritime transportation. Reliab Eng Syst Saf. 93(6):845–856. doi:10.1016/j.ress.2007.03.035
  • Ung ST. 2019. Evaluation of human error contribution to oil tanker collision using fault tree analysis and modified fuzzy Bayesian network based CREAM. Ocean Eng. 179:159–172. doi:10.1016/j.oceaneng.2019.03.031
  • Walker K, Macrae D, Ronald P. 2008. Carriage of Drilling Fluids and Brines-Implications for the Offshore Industry. Paper presented at: SPE International Conference on Health, Safety, and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, Nice, France. doi:10.2118/111978-MS
  • Wang J, Wang F, Chen S, Wang J, Hu L, Yin Y, Wu Y. 2016. Fault-tree-based instantaneous risk computing core in nuclear power plant risk monitor. Ann Nucl Energy. 95:35–41. doi:10.1016/j.anucene.2016.02.024
  • Wang W-J. 1997. New similarity measures on fuzzy sets and on elements. Fuzzy Set Syst. 85:305–309.
  • Wu B, Yan X, Wang Y, Soares CG. 2017. An evidential reasoning-based CREAM to human reliability analysis in maritime accident process. Risk Anal. 37(10):1936–1957. doi:10.1111/risa.12757
  • Xi YT, Yang ZL, Fang QG, Chen WJ, Wang J. 2017. A new hybrid approach to human error probability quantification–applications in maritime operations. Ocean Eng. 138:45–54. doi:10.1016/j.oceaneng.2017.04.018
  • Yang M, Khan FI, Lye L. 2013. Precursor-based hierarchical Bayesian approach for rare event frequency estimation: a case of oil spill accidents. Process Saf Environ Protect. 91(5):333–342. doi:10.1016/j.psep.2012.07.006
  • Yuhua D, Datao Y. 2005. Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis. J Loss Prev Process Ind. 18(2):83–88. doi:10.1016/j.jlp.2004.12.003
  • Zadeh LA. 1965. Fuzzy sets. Inf Contr. 8(3):338–353. doi:10.1016/S0019-9958(65)90241-X
  • Zhou T, Wu C, Zhang J, Zhang D. 2017. Incorporating CREAM and MCS into fault tree analysis of LNG carrier spill accidents. Saf Sci. 96:183–191. doi:10.1016/j.ssci.2017.03.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.