106
Views
0
CrossRef citations to date
0
Altmetric
Article

Implications of toxicity testing for health risk assessment of vapor-phase and PM2.5-bound polycyclic aromatic hydrocarbons during the diesel engine combustion

, , , &
Pages 802-825 | Received 10 Feb 2022, Accepted 03 Jul 2022, Published online: 14 Jul 2022

References

  • Abbas I, Badran G, Verdin A, Ledoux F, Roumié M, Courcot D, Garçon G. 2018. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. Environ Chem Lett. 16(2):439–475. doi:10.1007/s10311-017-0697-0
  • Agusti A, Faner R. 2019. Lung function trajectories in health and disease. Lancet Respir Med. 7(4):358–364. doi:10.1016/S2213-2600(18)30529-0
  • Bae SH, Che J-H, Seo J-M, Jeong J, Kim ET, Lee SW, Koo K-i, Suaning GJ, Lovell NH, Cho D-ID, et al. 2012. In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis. Invest Ophthalmol Vis Sci. 53(6):2653–2657. doi:10.1167/iovs.11-9341
  • Buyukkaya E. 2010. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel. 89(10):3099–3105. doi:10.1016/j.fuel.2010.05.034
  • Ceratti AM, de Costa GM, Alves DD, Cansi LM, Hansen J, Brochier F, de Quevedo DM, Osorio DM. 2021. Polycyclic aromatic hydrocarbons (PAH) in atmospheric particles (PM2.5 and PM2.5-10): integrated evaluation of the environmental scenario in urban areas. Water Air Soil Pollut. 232(1). doi:10.1007/s11270-020-04967-3
  • Chen W-H, Chen G-F, Lin Y-C. 2019. Influence of emulsified biodiesel on the emission and health risk of polycyclic aromatic hydrocarbons in the vapor and particulate phases during engine combustion. Environ Sci Pollut Res Int. 26(13):13510–13521. doi:10.1007/s11356-019-04805-y
  • Chen W-H, Chen Z-B, Yuan C-S, Hung C-H, Ning S-K., 2016a. Investigating the differences between receptor and dispersion modeling for concentration prediction and health risk assessment of volatile organic compounds from petrochemical industrial complexes. J Environ Manage. 166:440–449. doi:10.1016/j.jenvman.2015.10.050
  • Cheng Y-H, Lin Y-C, Chen I-S, Liu S-D, Li J-H, Wang C-C. 2017. Immunomodulatory effects of Taiwanese neolitsea species on Th1 and Th2 functionality. J Immunol Res. 2017:1–13. doi:10.1155/2017/3529859
  • Chen W-H, Hsieh M-T, You J-Y, Quadir A, Lee C-L. 2021. Temporal and vertical variations of polycyclic aromatic hydrocarbon at low elevations in an industrial city of southern Taiwan. Sci Rep. 11:3453. doi:10.1038/s41598-021-83155-7
  • Chen W-H, Huang T-H, Wang C-Y., 2018. Impact of pre-oxidation on nitrosamine formation from a source to drinking water: a perspective on cancer risk assessment. Process Saf Environ Prot. 113:424–434. doi:10.1016/j.psep.2017.11.016
  • Chen W-H, Yang J-H, Yuan C-S, Yang Y-H. 2016b. Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge. Environ Sci Pollut Res Int. 23(20):20449–20461. doi:10.1007/s11356-016-7183-2
  • Chen W-H, Yang W-B, Yuan C-S, Yang J-C, Zhao Q-L. 2014. Fates of chlorinated volatile organic compounds in aerobic biological treatment processes: The effects of aeration and sludge addition. Chemosphere. 103:92–98. doi:10.1016/j.chemosphere.2013.11.039
  • Collier AR, Rhead, MM, Trier CJ, Bell MA. 1995. Polycyclic aromatic compound profiles from a light-duty direct-injection diesel engine. 74:362–367.
  • de Kok TM, Hogervorst JG, Briedé JJ, van Herwijnen MH, Maas LM, Moonen EJ, Driece HA, Kleinjans JC. 2005. Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter. Environ Mol Mutagen. 46(2):71–80. doi:10.1002/em.20133
  • Dossus L, Becker S, Rinaldi S, Lukanova A, Tjønneland A, Olsen A, Overvad K, Chabbert-Buffet N, Boutron-Ruault M-C, Clavel-Chapelon F, et al. 2011. Tumor necrosis factor (TNF)-alpha, soluble TNF receptors and endometrial cancer risk: the EPIC study. Int J Cancer. 129(8):2032–2037. doi:10.1002/ijc.25840
  • Gomathi AC, Xavier Rajarathinam SR, Mohammed Sadiq A, Rajeshkumar S. 2020. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J Drug Deliv Sci Technol. 55:101376. doi:10.1016/j.jddst.2019.101376
  • He C, Ge Y, Tan J, You K, Han X, Wang J. 2010b. Characteristics of polycyclic aromatic hydrocarbons emissions of diesel engine fueled with biodiesel and diesel. 89:2040–2046.
  • He C, Ge Y, Tan J, You K, Han X, Wang J. 2010a. Characteristics of polycyclic aromatic hydrocarbons emissions of diesel engine fueled with biodiesel and diesel. Fuel. 89(8):2040–2046. doi:10.1016/j.fuel.2010.03.014
  • HRSAC 2008. Compilation of exposure factors in Taiwan. Taipei, Taiwan: Health Risk and Strategy Assessment Center CoPH, National Taiwan University.
  • IARC 2014. Diesel and gasoline engine exhausts and some nitroarenes. Lyon, France: International Agency for Research on Cancer (IARC) WHOW.
  • Jung S, Mun S, Chung T, Kim S, Seo S, Kim I, Hong H, Chong H, Sung K, Kim J, et al. 2019. Emission characteristics of regulated and unregulated air pollutants from heavy duty diesel trucks and buses. Aerosol Air Qual Res. 19(2):431–442. doi:10.4209/aaqr.2018.05.0195
  • Kabatkova M, et al. 2015. Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription. Toxicol Lett. 232:113–121.
  • Kappos AD, Bruckmann P, Eikmann T, Englert N, Heinrich U, Höppe P, Koch E, Krause GHM, Kreyling WG, Rauchfuss K, et al. 2004. Health effects of particles in ambient air. Int J Hyg Environ Health. 207(4):399–407. doi:10.1078/1438-4639-00306
  • Kim K-H, Jahan SA, Kabir E, Brown RJC. 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 60:71–80. doi:10.1016/j.envint.2013.07.019
  • Kittelson DB, Kraft M. 2014. Particle formation and models in internal combustion engines.
  • Lai I-C, Chang Y-C, Lee C-L, Chiou G-Y, Huang H-C. 2013. Source identification and characterization of atmospheric polycyclic aromatic hydrocarbons along the southwestern coastal area of Taiwan - with a GMDH approach. J Environ Manage. 115:60–68. doi:10.1016/j.jenvman.2012.11.018
  • Lee C-L, Huang H-C, Wang C-C, Sheu C-C, Wu C-C, Leung S-Y, Lai R-S, Lin C-C, Wei Y-F, Lai I-C, et al. 2016. A new grid-scale model simulating the spatiotemporal distribution of PM2.5-PAHs for exposure assessment. J Hazard Mater. 314:286–294. doi:10.1016/j.jhazmat.2016.04.047
  • Leung DYC, Luo Y, Chan TL. 2006. Optimization of exhaust emissions of a diesel engine fuelled with biodiesel. Energy Fuels. 20(3):1015–1023. doi:10.1021/ef050383s
  • Li ZY, et al. 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ. 468:843–853.
  • Li T, Hu R, Chen Z, Li Q, Huang S, Zhu Z, Zhou L-F. 2018. Fine particulate matter (PM2.5): the culprit for chronic lung diseases in China. Chron Dis Transl Med. 4(3):176–186. doi:10.1016/j.cdtm.2018.07.002
  • Li Y, Juhasz AL, Ma LQ, Cui X. 2019. Inhalation bioaccessibility of PAHs in PM2.5: implications for risk assessment and toxicity prediction. Sci Total Environ. 650:56–64. doi:10.1016/j.scitotenv.2018.08.246
  • Lin Y-C, Lee WJ, Wu TS, Wang CT. 2006. Comparison of PAH and regulated harmful matter emissions from biodiesel blends and paraffinic fuel blends on engine accumulated mileage test. 85:2516–2523.
  • Liu CC, et al. 2014. Multivariate analysis of effects of diurnal temperature and seasonal humidity variations by tropical savanna climate on the emissions of anthropogenic volatile organic compounds. Sci Total Environ. 470:311–323.
  • Mackay D, Paterson S. 1991. Evaluating the multimedia fate of organic-chemicals – a Level-III fugacity model. Environ Sci Technol. 25(3):427–436. doi:10.1021/es00015a008
  • MacLean HL, Lave LB. 2003. Evaluating automobile fuel/propulsion system technologies. Prog Energy Combust Sci. 29(1):1–69. doi:10.1016/S0360-1285(02)00032-1
  • Mi HH, Lee WJ, Chen CB, Yang HH, Wu SJ. 2000. Effect of fuel aromatic content on PAH emission from a heavy-duty diesel engine. Chemosphere. 41(11):1783–1790. doi:10.1016/s0045-6535(00)00043-6
  • MOEABOE. 2018. Fuel sale and consumption in different cities of Taiwan (2016). vol. 2018. Taipei, Taiwan: Bureau of Energy, Ministry of Economic Affair.
  • Mukhopadhyay S, Hoidal JR, Mukherjee TK. 2006. Role of TNF alpha in pulmonary pathophysiology. Respir Res. 7:125. doi:10.1186/1465-9921-7-125
  • Pandey P, Patel DK, Khan AH, Barman SC, Murthy RC, Kisku GC. 2013. Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and metal-bound carcinogenic risk in the population of Lucknow City, India. J Environ Sci Health A Tox Hazard Subst Environ Eng. 48(7):730–745. doi:10.1080/10934529.2013.744613
  • Peijnenburg W, Struijs J. 2006. Occurrence of phthalate esters in the environment of the Netherlands. Ecotoxicol Environ Saf. 63(2):204–215. doi:10.1016/j.ecoenv.2005.07.023
  • Runa F, et al. 2022. Light absorption properties of brown carbon from biomass burning emissions. Environ Sci Pollut Res. 29:21012–21022.
  • Schwarze PE, Ovrevik J, Låg M, Refsnes M, Nafstad P, Hetland RB, Dybing E. 2006. Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Hum Exp Toxicol. 25(10):559–579. doi:10.1177/096032706072520
  • Selim YA, Azb MA, Ragab I, H. M. Abd El-Azim M. 2020. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci Rep. 10:3445. doi:10.1038/s41598-020-60541-1
  • Shen C-C, Liang H-J, Wang C-C, Liao M-H, Jan T-R. 2011. A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression. Int J Nanomedicine. 6:2791–2798. doi:10.2147/IJN.S25588
  • Shibata T, Yamagata T, Kawade A, Asakura S, Toritsuka N, Koyama N, Hakura A. 2020. Evaluation of acetone as a solvent for the Ames test. Genes Environ. 42:3. doi:10.1186/s41021-020-0143-6
  • Tong X, Chen X-C, Chuang H-C, Cao J-J, Ho SSH, Lui K-H, Ho KF. 2019. Characteristics and cytotoxicity of indoor fine particulate matter (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Hong Kong. Air Qual Atmos Health. 12(12):1459–1468. doi:10.1007/s11869-019-00762-0
  • Tsai J-H, Chen S-J, Lin S-L, Huang K-L, Hsueh C-K, Lin C-C, Li P-M. 2019. Emissions of PM2.5-bound polycyclic aromatic hydrocarbons and metals from a diesel generator fueled with biodiesel converted from used cooking oil. Aerosol Air Qual Res. 19(7):1555–1565. doi:10.4209/aaqr.2019.04.0204
  • Turculeanu A, Mogoantă CA, IoniŢă E, Avrămescu CS, Afrem MC, Costache A. 2015. TNF-alpha evaluation in tonsil cancer. Rom J Morphol Embryol. 56(1):101–106.
  • TWDOH. 2015. Compilation of exposure factors. Taipei, Taiwan: Taiwan Department of Health (TWDOH), Executive Yuan.
  • TWMHW. 2008. Nutrition and Health Survey in Taiwan (NAHSIT) 2005–2008. vol. 2018. Taipei, Taiwan: Health Promotion Administration, Taiwan Ministry of Health and Welfare (TWMHW).
  • USDHHS. 1995. Polycyclic aromatic hydrocarbons (PAHs). Atlanta (GA): U.S. Department of Health and Human Services (USDHHS) PHS, Agency for Toxic Substances and Disease Registry (ATSDR).
  • USDHHS. 2017. Polycyclic aromatic hydrocarbons (PAHs) factsheet. Atlanta (GA): U.S. Department of Health & Human Services (USDHHS), Center for Disease Control and Prevention (CDC).
  • USEPA 2002. Health assessment document for diesel engine exhaust (Final 2002). Washington (DC): U.S. Environmental Protection Agency (USEPA) OoRaD, National Center for Environmental Assessment, Washington Office
  • USEPA. 2008. Polycyclic aromatic hydrocarbons (PAHs). USEPA archive document, vol 2020. Washington (DC): U.S. Environmental Protection Agency (USEPA), Office of Solid Waste.
  • USEPA. 2021. Integrated Risk Information System (IRIS). vol. 2021. Atlanta (GA): U.S. Environmental Protection Agency (USEPA).
  • Wang CC, et al. 2011. Areca nut extracts attenuated interferon-gamma and antigen-specific IgM production in BALB/c mice. J Food Drug Anal. 19:252–258.
  • Wang Y, Liu H, Lee CF. 2016. Particulate matter emission characteristics of diesel engines with biodiesel or biodiesel blending: a review. 64:569–581.
  • Wang C-C, Lin Y-C, Lin Y-C, Jhang S-R, Tung C-W. 2017. Identification of informative features for predicting proinflammatory potentials of engine exhausts. BioMed Eng OnLine. 16: 66. doi:10.1186/s12938-017-0355-6
  • Xing W, Zhang L, Yang L, Zhou Q, Zhang X, Toriba A, Hayakawa K, Tang N. 2020. Characteristics of PM2.5-bound polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons at a roadside air pollution monitoring station in Kanazawa, Japan. IJERPH. 17(3):805. doi:10.3390/ijerph17030805
  • Yang Y, Feng R, Bi S, Xu Y. 2011. TNF-alpha polymorphisms and breast cancer. Breast Cancer Res Treat. 129(2):513–519. doi:10.1007/s10549-011-1494-2
  • Yang J-J, Liu C-C, Chen W-H, Yuan C-S, Lin C. 2013. Assessing the altitude effect on distributions of volatile organic compounds from different sources by principal component analysis. Environ Sci Process Impacts. 15(5):972–985. doi:10.1039/c3em00034f
  • Yu P, Xu R, Coelho MS, Saldiva PH, Li S, Zhao Q, Mahal A, Sim M, Abramson MJ, Guo Y, et al. 2021. The impacts of long-term exposure to PM2.(5) on cancer hospitalizations in Brazil. Environ Int. 154:106671. doi:10.1016/j.envint.2021.106671
  • Zelinkova Z, Wenzl T. 2015. The occurrence of 16 EPA PAHs in food – a review. Polycycl Aromat Compd. 35(2–4):248–284. doi:10.1080/10406638.2014.918550
  • Zeng H, et al. 2021. Inhalation bioaccessibility, health risk assessment, and source appointment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Caofeidian, China. Environ Sci Pollut Res. 28(34):47574–47587.
  • Zhang K, Yang L, Li Q, Li R, Zhang D, Xu W, Feng J, Wang Q, Wang W, Huang L, et al. 2021. Hourly measurement of PM2.5-bound nonpolar organic compounds in Shanghai: Characteristics, sources and health risk assessment. Sci Total Environ. 789:148070. doi:10.1016/j.scitotenv.2021.148070
  • Zhang Q-Q, Ying G-G, Pan C-G, Liu Y-S, Zhao J-L. 2015. comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol. 49(11):6772–6782. doi:10.1021/acs.est.5b00729

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.