177
Views
0
CrossRef citations to date
0
Altmetric
Articles

Temporal effect of phytoremediation on the bacterial community in petroleum-contaminated soil

ORCID Icon, , , ORCID Icon, &
Pages 427-448 | Received 12 Apr 2022, Accepted 13 Jul 2022, Published online: 26 Jul 2022

References

  • Abed R, Al-Kindi S, Al-Kharusi S. 2015. Diversity of bacterial communities along a petroleum contamination gradient in desert soils. Microb Ecol. 69(1):95–105. doi:10.1007/s00248-014-0475-5
  • Agbogidi OM, Eruotor PG, Akparobi SO, Nnaji GU. 2006. Evaluation of crude oil contaminated soil on the mineral nutrient elements of maize (Zea mays L.). J Agronomy. 6(1):188–193. doi:10.3923/ja.2007.188.193
  • Agele SO, Adeyemo AJ, Bamiduro I. 2017. Dynamics of chemical and biological properties of organically amended petroleum hydrocarbon polluted soil as affected by incubation periods. J Bioremediat Biodegrad. 08(02):389. doi:10.4172/2155-6199.1000389
  • Alavi N, Parseh I, Ahmadi M, Jafarzadeh N, Yari AR, Chehrazi M, Chorom M. 2017. Phytoremediation of total petroleum hydrocarbons from highly aaline and clay soil using Sorghum halepense (L.) Pers. and Aeluropus littoralis (Guna) Parl. Soil Sediment Contam. 26(1):127–140. doi:10.1080/15320383.2017.1246516
  • Allamin IA, Halmi M, Yasid NA, Ahmad SA, Abdullah SRS, Shukor Y. 2020. Rhizodegradation of petroleum oily sludge-contaminated soil using Cajanus cajan increases the diversity of soil microbial community. Sci Rep. 10(1):4094. doi:10.1038/s41598-020-60668-1
  • Akoto R, Anning AK, Belford EJD. 2021. Effects of ethylenediaminetetraacetic acid-assisted phytoremediation on soil physicochemical and biological properties. Int J Environ Sci Technol. doi:10.1007/s13762-021-03770-9.
  • Ambaye TG, Chebbi A, Formicola F, Prasad S, Gomez FH, Franzetti A, Vaccari M. 2022. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: recent progress, challenges, and perspectives. Chemosphere. 293:133572. doi:10.1016/j.chemosphere.2022.133572
  • Bell TH, El-Din HS, Lauron-Moreau A, Al-Otaibi F, Hijri M, Yergeau E, St-Arnaud M. 2014. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. ISME J. 8(2):331–343. doi:10.1038/ismej.2013.149
  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, et al. 2012. Ultra-high-throughput microbial community analysis on the illumina HiSeq and miSeqplatforms. ISME J. 6(8):1621–1624. doi:10.1038/ismej.2012.8
  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 108(supplement_1):4516–4522. doi:10.1073/pnas.1000080107
  • Ding Z, Liang J, Fang HL. 2016. Simulation study on remediation effects of the three kinds of grass on petroleum hydrocarbon comtaminated soil. Environ Eng. 34(S1):970–975. +982.
  • Errington I, King CK, Wilkins D, Spedding T, Hose GC. 2018. Ecosystem effects and the management of petroleum-contaminated soils on subantarctic islands. Chemosphere. 194:200–210. doi:10.1016/j.chemosphere.2017.11.157
  • Esperschütz J, Pritsch K, Gattinger A, Welzl G, Haesler F, Buegger F, Winkler JB, Munch JC, Schloter M. 2009. Influence of chronic ozone stress on carbon translocation pattern into rhizosphere microbial communities of beech trees (Fagus sylvatica L.) during a growing season. Plant Soil. 323(1–2):85–95. doi:10.1007/s11104-009-0090-2
  • Euliss K, Ho CH, Schwab AP, Rock S, Banks MK. 2008. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresource Technol. 99(6):1961–1971. doi:10.1016/j.biortech.2007.03.055
  • Fatima K, Imran A, Amin I, Khan QM, Afzal M. 2018. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int J Phytoremediat. 20(7):675–681. doi:10.1080/15226514.2017.1413331
  • Iffis B, St-Arnaud M, Hijri M. 2017. Petroleum contamination and plant identity influence soil and root microbial communities while AMF spores retrieved from the same plants possess markedly different communities. Front Plant Sci. 8:1381. 10.3389/fpls.2017.01381.
  • Hall J, Soole K, Bentham R. 2011. Hydrocarbon phytoremediation in the family Fabaceae – a review. Int J Phytoremediation. 13(4):317–332. doi:10.1080/15226514.2010.495143
  • He X, Li P. 2020. Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): occurrence, sources and health risks. Expo Health. 12(3):385–401. doi:10.1007/s12403-020-00344-x
  • Hussain F, Khan AHA, Hussain I, Farooqi A, Muhammad YS, Iqbal M, Arslan M, Yousaf S. 2022. Soil conditioners improve rhizodegradation of aged petroleum hydrocarbons and enhance the growth of Lolium multiflorum. Environ Sci Pollut Res Int. 29(6):9097–9109. doi:10.1007/s11356-021-16149-7
  • Jeelani N, Yang W, Xu L, Qiao Y, An S, Leng X. 2017. Phytoremediation potential of acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Sci Rep. 7(1):8028. doi:10.1038/s41598-017-07831-3
  • Jeffrey L, Ulf Q, Jan S, Betula PA. 2015. Promising candidate for phytoremediation of TCE in northern climates. Int J Phytoremediat. 17(1–6):9–15. 10.1080/15226514.2013.828012.
  • Jiang B, Zhang B, Li L, Zhao Y, Shi Y, Jiang Q, Jia L. 2021. Analysis of microbial community structure and diversity in surrounding rock soil of different waste dump sites in fushun western opencast mine. Chemosphere. 269:128777. doi:10.1016/j.chemosphere.2020.128777
  • Kalita M, Chakravarty P, Deka H. 2022. Understanding biochemical defense and phytoremediation potential of Leucas aspera in crude oil polluted soil. Environ Sci Pollut Res. doi:10.1007/s11356-022-19922-4
  • Karppinen EM, Stewart KJ, Farrell RE, Siciliano SD. 2017. Petroleum hydrocarbon remediation in frozen soil using a meat and bonemeal biochar plus fertilizer. Chemosphere. 173:330–339. doi:10.1016/j.chemosphere.2017.01.016
  • Lee EH, Cho KS, Kim J. 2010. Comparative study of rhizobacterial community structure of plant species in oil-contaminated soil. J Microbiol Biotechnol. 20(9):1339–1347. doi:10.4014/jmb.1003.03022
  • Li P, Qian H, Howard KWF, Wu J, Lyu X. 2014. Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, northwest China. Environ Monit Assess. 186(3):1385–1398. doi:10.1007/s10661-013-3461-3
  • Li P, Qian H, Howard KWF, Wu J. 2015. Heavy metal contamination of Yellow River alluvial sediments, northwest China. Environ Earth Sci. 73(7):3403–3415. doi:10.1007/s12665-014-3628-4
  • Li P, Wu J, Qian H, Zhou W. 2016a. Distribution, enrichment and sources of trace metals in the topsoil in the vicinity of a steel wire plant along the Silk Road economic belt, northwest China. Environ Earth Sci. 75(10):909. doi:10.1007/s12665-016-5719-x
  • Li P, Wu J, Qian H. 2016b. Regulation of secondary soil salinization in semi-arid regions: a simulation research in the Nanshantaizi area along the Silk Road, northwest China. Environ Earth Sci. 75(8):698. doi:10.1007/s12665-016-5381-3
  • Li J, Wang G, Liu F, Cui L, Jiao Y. 2021. Source identification and potential ecological risk assessment of heavy metals in the topsoil of the Weining Plain (Northwest China). Expo Health. 13(1):79–92. doi:10.1007/s12403-021-00438-0
  • Liu L, Wu J, He S, Wang L. 2022. Occurrence and distribution of groundwater fluoride and manganese in the Weining Plain (China) and their probabilistic health risk quantification. Expo Health. 14(2):263–279. doi:10.1007/s12403-021-00434-4
  • Lin Y, Ye Y, Hu Y, Shi H. 2019. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotox Environ Safe. 180:557–564. doi:10.1016/j.ecoenv.2019.05.057
  • Liu WX, Luo YM, Teng Y, Li ZG, Ma LQ. 2010. Bioremediation of oily sludge-contaminated Soil by stimulating indigenous microbes. Environ Geochem Health. 32(1):23–29. doi:10.1007/s10653-009-9262-5
  • Liao J, Deng C, Chen Y, Zhou WZ, Lin CM, Zhang H. 2019. Pollution levels, sources, and spatial distribution of phthalate esters in soils of the West Lake Scenic Area. Huan Jing Ke Xue. 40(7):3378–3387. 10.13227/j.hjkx.201812207.
  • Lu L, Tyler H, Song J, Yi Z, Zhiyong JR. 2014. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Technol. 48(7):4021–4029. doi:10.1021/es4057906
  • Mannina G, Capodici M, Cosenza A, Cin P, Di Trapani D, Puglia AM, Ekama GA. 2017. Bacterial community structure and removal performances in IFAS-MBRs: a pilot plant case study. J Environ Manage. 198(Pt 1):122–131. doi:10.1016/j.jenvman.2017.04.031
  • Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P. 2010. Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol. 74(3):669–681. 10.1111/j.1547-6941.2010.00982.x.
  • Naga RM, Laura S, Kadiyala V. 2017. Microbial degradation of total petroleum hydrocarbons in crude oil: a field-scale study at the low-land rainforest of Ecuador. Environ Technol. 38:2543–2550. 10.1080/09593330.2016.1270356.
  • Naik D, Smith E, Cumming JR. 2009. Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum. Tree Physiol. 29(3):423–436. doi:10.1093/treephys/tpn035
  • Njoku KL, Akinola MO, Oboh BO. 2009. Phytoremediation of crude oil contaminated soil: the effect of growth of Glycine max on the physico-chemistry and crude oil contents of soil. Nat Sci. 7(10):79–87.
  • Osuji LC, Egbuson EJ, Ojinnaka CM. 2006. Assessment and treatment of hydrocarbon inundated soils using inorganic nutrient (N-P-K) supplements: II. A case study of eneka oil spillage in Niger Delta, Nigeria. Environ Monit Assess. 115(1–3):265–278. doi:10.1007/s10661-006-6552-6
  • Peng M, Zi XX, Wang QY. 2015. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes. IJERPH. 12(10):12002–12015. doi:10.3390/ijerph121012002
  • Peng Z, Guo ZH, Xiao XY, Peng C. 2019. Dynamic response of enzymatic activity and microbial community structure in metal (loid) - contaminated soil with tree-herb intercropping. Chemosphere. 345:5–248. doi:10.1016/j.geoderma.2019.03.013
  • Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS. 2011. Adaptation of Rhizobium Leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol. 12(10):R106. doi:10.1186/gb-2011-12-10-r106
  • Ruben G, Oksana K, Chen S, Einav MG, Tirza D, Yosef S. 2018. Impact of oil-spill contamination on a soil bacterial community: a 40-year history of rehabilitation in the Arava Valley. Soil Sediment Contam. 27(3):175–185. 10.1080/15320383.2018.1443427.
  • Sakshi, Singh SK, Haritash AK. 2019. Polycyclic aromatic hydrocarbons: soil pollution and remediation. Int J Environ Sci Technol. 16(10):6489–6512. doi:10.1007/s13762-019-02414-3
  • Seenivasan R, Prasath V, Mohanraj R. 2015. Restoration of sodic soils involving chemical and biological amendments and phytoremediation by Eucalyptus camaldulensis in a semiarid region. Environ Geochem Health. 37(3):575–586. doi:10.1007/s10653-014-9674-8
  • Sipila TP, Keskinen AK, Akerman ML, Fortelius C, Haahtela K, Yrjala K. 2008. High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J. 2(9):968–981. doi:10.1038/ismej.2008.50
  • Tan YP, Ma Y, Jie L. 2016. Effect of oil pollution on soil bacteria structure characteristics. Biotechnology. 26(2):193. 10.16519/j.cnki.1004-11x.2016.02.0035.
  • Tang JC, Wang M, Wang F, Sun Q, Zhou QX. 2011. Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci (China). 23(5):845–851. doi:10.1016/S1001-0742(10)60517-7
  • Tao KY, Zhang XY, Chen XP, Liu XY, Hu XX, Yuan XY. 2019. Response of soil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal. Chemosphere. 222(5):831–838. doi:10.1016/j.chemosphere.2019.01.133
  • Thanh HT, Einav MG, Amram E, Gidon W. 2018. Germination, physiological and biochemical responses of Acacia seedlings (Acacia raddiana and Acacia tortilis) to petroleum contaminated soils. Environ Pollut. 234:642–655. 10.1016/j.envpol.2017.11.067.
  • Tyagi M, da Fonseca M, Manuela R, de Carvalho CCCR. 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 22(2):231–241. doi:10.1007/s10532-010-9394-4
  • Wang A, Fu WX, Feng Y, Liu ZM, Song DH. 2022. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. J Hazard Mater. 429:128396. doi:10.1016/j.jhazmat.2022.128396
  • Wang HH, Kuang SP, Lang QL, Wang L. 2021a. Bacterial community structure of aged oil sludge contaminated soil revealed by illumina high-throughput sequencing in East China. World J Microb Biot. 37(11):183. 10.1007/s11274-021-03059-6.
  • Wang L, Li P, Duan R, He X. 2021b. Occurrence, controlling factors and health risks of Cr6+ in groundwater in the Guanzhong Basin of China. Expo Health. 14(2):239–251. doi:10.1007/s12403-021-00410-y
  • Wang WL, Yuan QY, Dong BC, Gao JQ, Han GX, Yu FH. 2019. Effects of clonal integration and crude oil pollution on soil physicochemical properties in a Phragmites australis wetland. Acta Ecologica Sinica. 39(24):9179–9187. 10.5846/stxb201810102193.
  • Wang YG, Wang JQ, Leng FF, Chen JX. 2021c. Effects of oil pollution on indigenous bacterial diversity and community structure of soil in Fushun, Liaoning province, China. Geomicrobiol J. 38(2):115–126. doi:10.1080/01490451.2020.1817196
  • Wang YJ, Su PX, Ge X, Ren HL, Ma ST, Shen GF, Chen Q, Yu YX, An TC. 2022. Identification of specific halogenated polycyclic aromatic hydrocarbons in surface soils of petrochemical, flame retardant, and electronic waste dismantling industrial parks. J Hazard Mater. 436: 129160. 10.1016/j.chemosphere.2018.10.050.
  • Wei Y. 2019a. Effects of oil pollution on soil properties and phytoremediation of polluted soils. Northwest A&F University. 10.27409/d.cnki.gxbnu.2019.000114.
  • Wei Y, Wang Y, Duan M, Han JC, Li G. 2019b. Growth tolerance and remediation potential of six plants in oil-polluted soil. J Soils Sediments. 19(11):3773–3785. doi:10.1007/s11368-019-02348-w
  • Wu J, Li P, Qian H, Fang Y. 2014. Assessment of soil salinization based on a low-cost method and its influencing factors in a semi-arid agricultural area, northwest China. Environ Earth Sci. 71(8):3465–3475. doi:10.1007/s12665-013-2736-x
  • Wu ML, Li W, Dick WA, Ye XQ, Chen KL, Kost D, Chen LM. 2017. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere. 169:124–130. doi:10.1016/j.chemosphere.2016.11.059
  • Wyszkowska J, Borowik A, Kucharski J. 2019. The resistance of Lolium perenne L. × hybridum, Poa pratensis, Festuca rubra, F. arundinacea, Phleum pratense and Dactylis glomerata to soil pollution by diesel oil and petroleum. Plant Soil Environ. 65(6):307–312. doi:10.17221/42/2019-PSE
  • Xu YH, Lu M. 2010. Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater. 183(1–3):395–401. doi:10.1016/j.jhazmat.2010.07.038
  • Yan DF, Jacob GM, Nicholas JCG, Bissett A, Lowe AJ, Breed MF. 2018. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol Conserv. 217:113–120. doi:10.1016/j.biocon.2017.10.035
  • Yan L, Sinkko H, Penttinen P, Lindström K. 2016. Characterization of successional changes in bacterial community composition during bioremediation of used motor oil-contaminated soil in a boreal climate. Sci Total Environ. 542(Pt A):817–825. doi:10.1016/j.scitotenv.2015.10.144
  • Yang KM, Poolpak T, Pokethitiyook P, Kruatrachue M. 2022. Assessment of dynamic microbial community structure and rhizosphere interactions during bioaugmented phytoremediation of petroleum contaminated soil by a newly designed rhizobox system. Int J Phytoremediat.Mar 10: 1–13. doi:10.1080/15226514.2022.2040420
  • Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW. 2014. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J. 8(2):344–358. doi:10.1038/ismej.2013.163
  • Ye XQ, Wu ML, Chen KL, Li W, Yuan J. 2017. Impacts of bioremediation on microbial communities and different forms of nitrogen in petroleum contaminated soil. Environ Sci. 38(2):728–734. 10.13227/j.hjkx.201608008.
  • Yu SL, Li SG, Tang YQ, Wu XL. 2011. Succession of bacterial community along with the removal of heavy crude oil pollutants by multiple biostimulation treatments in the Yellow River Delta, China. J Environ Sci. 23(9):1533–1543. doi:10.1016/S1001-0742(10)60585-2
  • Yu Y, Zhang W, Chen GH, Gao YC, Wang JN. 2014. Preparation of petroleum-degrading bacterial agent and its application in remediation of contaminated soil in Sheng Li Oil Field. Environ Sci Pollut Res Int. 21(13):7929–7937. doi:10.1007/s11356-014-2707-0
  • Zahar HF, Christine M, Odile B, Ignacio RJ, James P, Jrme B, Thierry H, Wafa A. 2008. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 12(2):1221–1230. 10.1038/ismej.2008.80.
  • Zhang XB, Zhan XH, Zhou LX, Liang X. 2011. Dynamic changes of physicochemical properties in phenanthrene-contaminated soil under wheat and clover intercropping. Environ Sci. 32(5):1462–1470. 10.13227/j.hjkx.2011.05.045.
  • Zhao H, Song F, Su F, Shen Y, Li P. 2021. Removal of cadmium from contaminated groundwater using a novel silicon/aluminum nanomaterial: an experimental study. Arch Environ Contam Toxicol. 80(1):234–247. doi:10.1007/s00244-020-00784-1
  • Zhao H, Li P, He X. 2022. Remediation of cadmium contaminated soil by modified gangue material: characterization, performance and mechanisms. Chemosphere. 290:133347. doi:10.1016/j.chemosphere.2021.133347
  • Zhou EN, Crawford RL. 1995. Effects of oxygen, nitrogen, and temperature on gasline biodegradation in soil. Biodegradation. 6(2):127–140. doi:10.1007/BF00695343
  • Zhou JH, Gao RR, Wu XY, Liu ZQ, Pu HY, Yuan YH, Tian SN. 2019. Effects of ryegrass, organic pollution and inorganic pollution on soil microbial activities. Chin J Soil Sci. 50(6):1447–1454.
  • Zhao YT, Wang GD, Zhao ML, Wang M, Jiang M. 2022. Direct and indirect effects of soil salinization on soil seed banks in salinizing wetlands in the Songnen Plain, China. Sci Total Environ. 819:152035. doi:10.1016/j.scitotenv.2021.152035
  • Zhu N, Wang J, Wang Y, Li S, Chen J. 2022. Differences in geological conditions have reshaped the structure and diversity of microbial communities in oily soils. Environ Pollut. 306:119404. doi:10.1016/j.envpol.2022.119404

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.