479
Views
5
CrossRef citations to date
0
Altmetric
Articles

Determination of the spatial correlation characteristics for selected groundwater pollutants using the geographically weighted regression model: A case study in Weinan, Northwest China

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 471-493 | Received 24 Jul 2022, Accepted 10 Sep 2022, Published online: 20 Sep 2022

References

  • Ai L, Shi ZH, Yin W, Huang X. 2015. Spatial and seasonal patterns in stream water contamination across mountainous watersheds: linkage with landscape characteristics. J Hydrol. 523:398–408. doi:10.1016/j.jhydrol.2015.01.082
  • Akaike H. 1998. Information theory and an extension of the maximum likelihood principle. In: Emanuel, P, Kunio, T, Genshiro, K, editors. Selected papers of Hirotugu Akaike. New York: Springer. p. 199–213.
  • Andrade A, Stigter TY. 2013. The distribution of arsenic in shallow alluvial groundwater under agricultural land in central Portugal: insights from multivariate geostatistical modeling. Sci Total Environ. 449:37–51. doi:10.1016/j.scitotenv.2013.01.033.
  • Bauder JW, Sinclair KN, Lund RE. 1993. Physiographic and land use characteristics associated with nitrate-nitrogen in Montana groundwater. J Environ Qual. 22(2):255–262. doi:10.2134/jeq1993.00472425002200020004x
  • Boy-Roura M, Nolan BT, Menció A, Mas-Pla J. 2013. Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). J Hydrol. 505:150–162. doi:10.1016/j.jhydrol.2013.09.048
  • Brown S, Versace VL, Laurenson L, Ierodiaconou D, Fawcett J, Salzman S. 2012. Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environ Model Assess. 17(3):241–254. doi:10.1007/s10666-011-9289-8
  • Ceballos E, Dubny S, Othax N, Zabala ME, Peluso F. 2021. Assessment of human health risk of chromium and nitrate pollution in groundwater and soil of the Matanza-Riachuelo River Basin, Argentina. Expo Health. 13(3):323–336. doi:10.1007/s12403-021-00386-9
  • Chen Q, Mei K, Dahlgren RA, Wang T, Gong J, Zhang M. 2016. Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression. Sci Total Environ. 572:450–466. doi:10.1016/j.scitotenv.2016.08.052.
  • Dehghanzadeh R, Safavy Hir N, Shamsy Sis J, Taghipour H. 2015. Integrated assessment of spatial and temporal variations of groundwater quality in the eastern area of Urmia Salt Lake Basin using multivariate statistical analysis. Water Resour Manage. 29(4):1351–1364. doi:10.1007/s11269-014-0877-7
  • Egbi CD, Anornu GK, Appiah-Adjei EK, Ganyaglo SY, Dampare SB. 2021. Trace metals migration and contamination assessment of groundwater in the Lower Volta River Basin, Ghana. Expo Health. 13(3):487–504. doi:10.1007/s12403-021-00398-5
  • Farber S, Páez A. 2007. A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations. J Geograph Syst. 9(4):371–396. doi:10.1007/s10109-007-0051-3
  • Ferchichi H, Ben Hamouda MF, Farhat B, Ben Mammou A. 2018. Assessment of groundwater salinity using GIS and multivariate statistics in a coastal Mediterranean aquifer. Int J Environ Sci Technol. 15(11):2473–2492. doi:10.1007/s13762-018-1767-y
  • Fotheringham AS, Brunsdon C, Charlton M. 2002. Geographically weighted regression: the analysis of spatially varying relationships. West Sussex: Wiley.
  • Gemitzi A, Petalas C, Pisinaras V, Tsihrintzis VA. 2009. Spatial prediction of nitrate pollution in groundwaters using neural networks and GIS: an application to South Rhodope aquifer (Thrace, Greece). Hydrol Process. 23(3):372–383. doi:10.1002/hyp.7143
  • Goodchild MF. 2004. The validity and usefulness of laws in geographic information science and geography. Ann Am Assoc Geogr. 94(2):300–303. doi:10.1111/j.1467-8306.2004.09402008.x
  • Griffith DA. 2008. Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environ Plann A. 40(11):2751–2769. doi:10.1068/a38218
  • Gugulothu S, Subba Rao N, Das R, Duvva LK, Dhakate R. 2022. Judging the sources of inferior groundwater quality and health risk problems through intake of groundwater nitrate and fluoride from a rural part of Telangana, India. Environ Sci Pollut Res. 29(32):49070–49091. doi:10.1007/s11356-022-18967-9.
  • Guo Y, Li P, He X, Wang L. 2022. Groundwater quality in and around a landfill in northwest China: characteristic pollutant identification, health risk assessment, and controlling factor analysis. Expo Health. doi:10.1007/s12403-022-00464-6
  • He S, Li P, Su F, Wang D, Ren X. 2022b. Identification and apportionment of shallow groundwater nitrate pollution in Weining Plain, northwest China, using hydrochemical indices, nitrate stable isotopes, and the new Bayesian stable isotope mixing model (MixSIAR). Environ Pollut. 298:118852. doi:10.1016/j.envpol.2022.118852.
  • He S, Li P, Wu J, Elumalai V, Adimalla N. 2020. Groundwater quality under land use/land cover changes: a temporal study from 2005 to 2015 in Xi’an, northwest China. Hum Ecol Risk Assess. 26(10):2771–2797. doi:10.1080/10807039.2019.1684186
  • He S, Wu J. 2019. Relationships of groundwater quality and associated health risks with land use/land cover patterns: a case study in a loess area, northwest China. Hum Ecol Risk Assess. 25(1–2):354–373. doi:10.1080/10807039.2019.1570463
  • He S, Wu J, Wang D, He X. 2022a. Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest. Chemosphere. 290:133388. doi:10.1016/j.chemosphere.2021.133388.
  • Huang H, Chen Z, Wang T, Zhang L, Liu T, Zhou G. 2021. Pattern and degree of groundwater recharge from river leakage in a karst canyon area under intensive mine dewatering. Sci Total Environ. 774:144921. doi:10.1016/j.scitotenv.2020.144921.
  • Ishizawa H, Stevens G. 2007. Non-English language neighborhoods in Chicago, Illinois: 2000. Soc Sci Res. 36(3):263–279. doi:10.1016/j.ssresearch.2006.06.005
  • Ji Y, Wu J, Wang Y, Elumalai V, Subramani T. 2020. Seasonal variation of drinking water quality and human health risk assessment in Hancheng City of Guanzhong Plain, China. Expo Health. 12(3):469–485. doi:10.1007/s12403-020-00357-6
  • Jung Y-Y, Koh D-C, Park W-B, Ha K. 2016. Evaluation of multiple regression models using spatial variables to predict nitrate concentrations in volcanic aquifers. Hydrol Process. 30(5):663–675. doi:10.1002/hyp.10633
  • Kaown D, Hyun Y, Bae G-O, Lee K-K. 2007. Factors affecting the spatial pattern of nitrate contamination in shallow groundwater. J Environ Qual. 36(5):1479–1487. doi:10.2134/jeq2006.0361.
  • Koh E-H, Lee E, Lee K-K. 2020. Application of geographically weighted regression models to predict spatial characteristics of nitrate contamination: implications for an effective groundwater management strategy. J Environ Manage. 268:110646. doi:10.1016/j.jenvman.2020.110646.
  • Lazhar B, Sheikhy NT. 2015. Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resour Manage. 29(6):2073–2089. doi:10.1007/s11269-015-0929-7
  • Lee S-W, Hwang S-J, Lee S-B, Hwang H-S, Sung H-C. 2009. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape Urban Plann. 92(2):80–89. doi:10.1016/j.landurbplan.2009.02.008
  • Li P. 2018. Mine water problems and solutions in China. Mine Water Environ. 37(2):217–221. doi:10.1007/s10230-018-0543-z
  • Li P, He X, Guo W. 2019. Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: a case study in Yan’an City on the Loess Plateau of northwest China. Hum Ecol Risk Assess. 25(1–2):1–10. doi:10.1080/10807039.2018.1553612
  • Li P, Karunanidhi D, Subramani T, Srinivasamoorthy K. 2021a. Sources and consequences of groundwater contamination. Arch Environ Contam Toxicol. 80(1):1–10. doi:10.1007/s00244-020-00805-z.
  • Li Y, Li P, Cui X, He S. 2021b. Groundwater quality, health risk, and major influencing factors in the lower Beiluo River watershed of northwest China. Hum Ecol Risk Assess. 27(7):1987–2013. doi:10.1080/10807039.2021.1940834
  • Li P, Qian H, Wu J, Chen J, Zhang Y, Zhang H. 2014. Occurrence and hydrogeochemistry of fluoride in alluvial aquifer of Weihe River, China. Environ Earth Sci. 71(7):3133–3145. doi:10.1007/s12665-013-2691-6
  • Li P, Tian R, Xue C, Wu J. 2017. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res. 24(15):13224–13234. doi:10.1007/s11356-017-8753-7.
  • Liu W, Li S, Bu H, Zhang Q, Liu G. 2012. Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors. Environ Sci Pollut Res. 19(3):858–870. doi:10.1007/s11356-011-0616-z.
  • Liu M, Tian H, Yang Q, Yang J, Song X, Lohrenz SE, Cai W-J. 2013. Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resour Res. 49(4):1988–2012. doi:10.1002/wrcr.20180
  • Liu L, Wu J, He S, Wang L. 2022. Occurrence and distribution of groundwater fluoride and manganese in the Weining Plain (China) and their probabilistic health risk quantification. Expo Health. 14(2):263–279. doi:10.1007/s12403-021-00434-4
  • Li P, Wu J, Qian H. 2016. Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China. Arab J Geosci. 9(1):15. doi:10.1007/s12517-015-2059-1
  • Machiwal D, Cloutier V, Güler C, Kazakis N. 2018. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ Earth Sci. 77(19):681. doi:10.1007/s12665-018-7872-x
  • Marghade D, Malpe DB, Subba Rao N. 2021. Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of Eastern Maharashtra, India. Environ Geochem Health. 43(2):683–703. doi:10.1007/s10653-019-00478-1.
  • Ministry of Environmental Protection of the P.R. China. 2011. National groundwater pollution prevention plan (2011–2020). Beijing: China Environmental Science Press (in Chinese).
  • Ministry of Land and Resources of the P.R. China. 2006. The specification of testing quality management for geological laboratories (DZ/T 0130.6-2006). Beijing: China Standards Press (in Chinese).
  • Panagopoulos GP, Antonakos AK, Lambrakis NJ. 2006. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J. 14(6):894–911. doi:10.1007/s10040-005-0008-x
  • Pratt B, Chang H. 2012. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. J Hazard Mater. 209–210:48–58. doi:10.1016/j.jhazmat.2011.12.068.
  • Ren X, Li P, He X, Su F, Elumalai V. 2021. Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China. Arch Environ Contam Toxicol. 80(1):74–91. doi:10.1007/s00244-020-00772-5.
  • Seeboonruang U. 2012. A statistical assessment of the impact of land uses on surface water quality indexes. J Environ Manage. 101:134–142. doi:10.1016/j.jenvman.2011.10.019.
  • Serio F, Miglietta PP, Lamastra L, Ficocelli S, Intini F, De Leo F, De Donno A. 2018. Groundwater nitrate contamination and agricultural land use: a grey water footprint perspective in Southern Apulia Region (Italy). Sci Total Environ. 645:1425–1431. doi:10.1016/j.scitotenv.2018.07.241.
  • Su F, Wu J, Wang D, Zhao H, Wang Y, He X. 2022. Moisture movement, soil salt migration, and nitrogen transformation under different irrigation conditions: field experimental research. Chemosphere. 300:134569. doi:10.1016/j.chemosphere.2022.134569.
  • Subba Rao N, Dinakar A, Sun L. 2022. Estimation of groundwater pollution levels and specific ionic sources in the groundwater, using a comprehensive approach of geochemical ratios, pollution index of groundwater, unmix model and land use/land cover – a case study. J Contam Hydrol. 248:103990. doi:10.1016/j.jconhyd.2022.103990.
  • Sun Y, Guo Q, Liu J, Wang R. 2014. Scale effects on spatially varying relationships between urban landscape patterns and water quality. Environ Manage. 54(2):272–287. doi:10.1007/s00267-014-0287-x.
  • Tiefelsdorf M. 2000. Gaussian spatial processes. In: Tiefelsdorf, M, editor. Modelling spatial processes: the identification and analysis of spatial relationships in regression residuals by means of Moran’s I. Berlin Heidelberg: Springer. p. 37–54.
  • Tu J. 2011. Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression. Appl Geogr. 31(1):376–392. doi:10.1016/j.apgeog.2010.08.001
  • Tu J. 2013. Spatial variations in the relationships between land use and water quality across an urbanization gradient in the watersheds of Northern Georgia, USA. Environ Manage. 51(1):1–17. doi:10.1007/s00267-011-9738-9.
  • Tu J, Xia Z-G. 2008. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation. Sci Total Environ. 407(1):358–378. doi:10.1016/j.scitotenv.2008.09.031.
  • Van Der Ploeg MJ, Appels WM, Cirkel DG, Oosterwoud MR, Witte J-PM, Van Der Zee S. 2012. Microtopography as a driving mechanism for ecohydrological processes in shallow groundwater systems. Vadose Zone J. 11(3):vzj2011.0098. doi:10.2136/vzj2011.0098
  • Wan Y, Qian Y, Migliaccio KW, Li Y, Conrad C. 2014. Linking spatial variations in water quality with water and land management using multivariate techniques. J Environ Qual. 43(2):599–610. doi:10.2134/jeq2013.09.0355.
  • Wang Y, Li P. 2022. Appraisal of shallow groundwater quality with human health risk assessment in different seasons in rural areas of the Guanzhong Plain (China). Environ Res. 207(112210):112210. doi:10.1007/s12403-021-00438-0
  • Wang Q, Ni J, Tenhunen J. 2005. Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Glob Ecol Biogeogr. 14(4):379–393. doi:10.1111/j.1466-822X.2005.00153.x
  • Wheeler DC. 2009. Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso. Environ Plan A. 41(3):722–742. doi:10.1068/a40256
  • Wheeler DC, Tiefelsdorf M. 2005. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J Geograph Syst. 7(2):161–187. doi:10.1007/s10109-005-0155-6
  • Wu J, Sun Z. 2016. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health. 8(3):311–329. doi:10.1007/s12403-015-0170-x
  • Wu J, Zhang Y, Zhou H. 2020. Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of Northwest China. Geochemistry. 80(4):125607. doi:10.1016/j.chemer.2020.125607
  • Xie X, Wang Y, Li J, Su C, Duan M. 2013. Hydrogeochemical and isotopic investigations on groundwater salinization in the Datong Basin, Northern China. J Am Water Resour Assoc. 49(2):402–414. doi:10.1111/jawr.12028
  • Xu F, Li P, Chen W, He S, Li F, Mu D, Elumalai V. 2022. Impacts of land use/land cover patterns on groundwater quality in the Guanzhong Basin of Northwest China. Geocarto Int. doi:10.1080/10106049.2022.2115153
  • Zhang L, Li P, He X. 2022. Interactions between surface water and groundwater in selected tributaries of the Wei River (China) revealed by hydrochemistry and stable isotopes. Hum Ecol Risk Assess. 28(1):79–99. doi:10.1080/10807039.2021.2016054
  • Zhang Z, Wang Z, Xu Y, Zhang Y, Guo L, Zheng Q, Tang L. 2020. Quantitative study on the changes of karst groundwater level and hydrochemistry in Jinci Spring catchment, Shanxi, China. Expo Health. 12(3):513–525. doi:10.1007/s12403-019-00317-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.