183
Views
0
CrossRef citations to date
0
Altmetric
Articles

Variations in local, transported, and exposure risks of PM2.5 pollution: Insights from long-term monitoring data in mega coastal city

& ORCID Icon
Pages 1146-1174 | Received 24 Jun 2022, Accepted 02 Oct 2022, Published online: 23 Oct 2022

References

  • Ali-Taleshi MS, Moeinaddini M, Riyahi Bakhtiari A, Feiznia S, Squizzato S, Bourliva A. 2021. A one-year monitoring of spatiotemporal variations of PM2.5-bound PAHs in Tehran, Iran: source apportionment, local and regional sources origins and source-specific cancer risk assessment. Environ Pollut. 274:115883. doi:10.1016/j.envpol.2020.115883.
  • Althuwaynee OF, Pokharel B, Aydda A, Balogun AL, Kim SW, Park HJ. 2021. Spatial identification and temporal prediction of air pollution sources using conditional bivariate probability function and time series signature. J Expo Sci Environ Epidemiol. 31(4):709–726. doi:10.1038/s41370-020-00271-8
  • Apte JS, Marshall JD, Cohen AJ, Brauer M. 2015. Addressing global mortality from ambient PM2.5. Environ Sci Technol. 49(13):8057–8066. doi:10.1021/acs.est.5b01236.
  • Asl Bahrami F, M, Leili Y, Vaziri Salahshour S, Arian A, Cristaldi Oliveri G, Conti, M, Ferrante. 2018. Health Impacts quantification of ambient air pollutants using AirQ model approach in Hamadan, Iran. Environ Res. 161(October 2017):114–121. doi:10.1016/j.envres.2017.10.050.
  • Benetello F, Squizzato S, Hofer A, Masiol M, Khan MB, Piazzalunga A, Fermo P, Formenton GM, Rampazzo G, Pavoni B. 2017. Estimation of local and external contributions of biomass burning to PM2.5 in an industrial zone included in a large urban settlement. Environ Sci Pollut Res Int. 24(2):2100–2115. doi:10.1007/s11356-016-7987-0.
  • Bera B, Bhattacharjee S, Sengupta N, Saha S. 2022. Variation and dispersal of PM10 and PM2.5 during COVID-19 lockdown over Kolkata Metropolitan City, India investigated through HYSPLIT model. Geosci Front. 13(1):101291. doi:10.1016/j.gsf.2021.101291
  • Bherwani H, Kumar S, Musugu K, Nair M, Gautam S, Gupta A, Ho CH, Anshul A, Kumar R. 2021. Assessment and valuation of health impacts of fine particulate matter during COVID-19 lockdown: a comprehensive study of tropical and subtropical countries. Environ Sci Pollut Res Int. 28(32):44522–44537. doi:10.1007/s11356-021-13813-w.
  • Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV, Dentener F, van Dingenen R, Estep K, Amini H, Apte JS, et al. 2016. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol. 50(1):79–88. doi:10.1021/acs.est.5b03709.
  • Budhiraja S, Indrayan A, Aggarwal M, Jha V, Jain D, Tarai B, Das P, Aggarwal P, Mishra RS, Bali S, et al. 2021. Differentials in the characteristics of COVID-19 cases in wave-1 and wave-2 admitted to a network of hospitals in North India. MedRxiv. http://medrxiv.org/content/early/2021/06/27/2021.06.24.21259438.abstract.
  • Burnett RT, Pope CA, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, et al. 2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 122(4):397–403. doi:10.1289/ehp.1307049
  • Byčenkienė S, Plauškaitė K, Dudoitis V, Ulevicius V. 2014. “Urban background levels of particle number concentration and sources in Vilnius, Lithuania”. Atmos Res. 143:279–292. doi:10.1016/j.atmosres.2014.02.019
  • Census Commissioner of India. 2019. Sample Registration System Statistical Report. Office Of The Registrar General & Census Comissioner, India Ministry Of Home Affairs Government Of India. [accessed 2022 March 12]. http://www.censusindia.gov.in/vital_statistics/SRS_Report/9Chap2-2011.pdf.
  • Census of India. 2011. Census of India 2011. Ministry of Home Affairs. [accessed 2019 August 18]. http://censusindia.gov.in/2011census/PCA/A4.html.
  • Cetin B, Yurdakul S, Gungormus E, Ozturk F, Sofuoglu SC. 2018. Source apportionment and carcinogenic risk assessment of passive air sampler-derived PAHs and PCBs in a heavily industrialized region. Sci Total Environ. 633:30–41. doi:10.1016/j.scitotenv.2018.03.145.
  • Chen G, Tao J, Wang J, Dong M, Li X, Sun X, Cheng S, Fan J, Ye Y, Xiao J, et al. 2021. Reduction of air pollutants and associated mortality during and after the COVID-19 lockdown in China: impacts and implications. Environ Res. 200(June):111457. doi:10.1016/j.envres.2021.111457.
  • Chen T, He J, Lu X, She J, Guan Z. 2016. Spatial and temporal variations of PM2.5 and its relation to meteorological factors in the urban area of Nanjing, China. Int J Environ Rea Public Health. 13(9):921. doi:10.3390/ijerph13090921
  • Chen TF, Chang KH, Tsai CY. 2014. Modeling direct and indirect effect of long range transport on atmospheric PM2.5 levels. Atmos Environ. 89:1–9. doi:10.1016/j.atmosenv.2014.01.065
  • Chen Y, Wild O, Conibear L, Ran L, He J, Wang L, Wang Y. 2020. Local characteristics of and exposure to fine particulate matter (PM2.5) in four Indian megacities. Atmos Environ. 5(April 2019):100052. doi:10.1016/j.aeaoa.2019.100052
  • Chennai Floods 2021. 2022. The conversation; [accessed Jan 2]. https://theconversation.com/chennais-floods-the-city-has-learned-nothing-from-the-past-heres-what-it-can-do-172254.
  • Chinnaswamy S. 2021. Understanding the devastating second wave of COVID-19 pandemic in India. Am J Hum Biol. 33(6):1–12. doi:10.1002/ajhb.23671
  • CPCB. 2010. Conceptual guidelines and common methodology for air quality monitoring, emission inventory & source apportionment studies for Indian cities conceptual guidelines and common methodology for air quality monitoring, apportionment studies for Indian cities. [accessed 2022 March 20]. http://cpcb.nic.in/sourceapportionmentstudies.pdf.
  • Dai Q, Liu B, Bi X, Wu J, Liang D, Zhang Y, Feng Y, Hopke PK. 2020. Dispersion normalized PMF provides insights into the significant changes in source contributions to PM2.5 after the CoviD-19 outbreak. Environ Sci Technol. 54(16):9917–9927. doi:10.1021/acs.est.0c02776.
  • Das P, Mandal I, Pal S, Mahato S, Talukdar S, Debanshi S. 2022. Comparing air quality during nationwide and regional lockdown in Mumbai metropolitan city of India. Geocarto Int. 1–26. Taylor & Francis doi:10.1080/10106049.2022.2034987
  • Di Giuseppe F, Riccio A, Caporaso L, Bonafé G, Gobbi GP, Angelini F. 2012. Automatic detection of atmospheric boundary layer height using ceilometer backscatter data assisted by a boundary layer model. QJR Meteorol Soc. 138(664):649–663. doi:10.1002/qj.964
  • Draxler RR, Hess GD. 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust Meteorol Mag. 47(4):295–308.
  • Etchie TO, Sivanesan S, Adewuyi GO, Krishnamurthi K, Rao PS, Etchie AT, Pillarisetti A, Arora NK, Smith KR. 2017. The health burden and economic costs averted by ambient PM 2.5 pollution reductions in Nagpur, India. Environ Int. 102:145–156. doi:10.1016/j.envint.2017.02.010
  • EuroMonitor International. 2017. 2017 top 100 cities destinations final report. Euromonitor International. London, United Kingdom
  • Faridi S, Shamsipour M, Krzyzanowski M, Künzli N, Amini H, Azimi F, Malkawi M, Momeniha F, Gholampour A, Hassanvand MS, et al. 2018. Long-term trends and health impact of PM 2.5 and O3 in Tehran, Iran, 2006-2015. Environ Int. 114(1547):37–49. doi:10.1016/j.envint.2018.02.026.
  • Gadi R, Sharma SK, Mandal TK. 2019. Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2.5): a complete year study over National Capital Region of India. Chemosphere. 221:583–596. doi:10.1016/j.chemosphere.2019.01.067.
  • GBD. 2020. GBD. IHME 2016. [accessed January 20]. https://vizhub.healthdata.org/gbd-compare/.
  • Gogikar P, Tyagi B, Padhan RR, Mahaling M. 2018. Particulate matter assessment using in situ observations from 2009 to 2014 over an industrial region of Eastern India. Earth Syst Environ. 2(2):305–322. doi:10.1007/s41748-018-0072-8
  • Griffin RD. 2006. Principles of air quality management, 2nd ed. Boca Raton, FL, USA: Taylor & Francis.
  • Griffith SM, Huang W-S, Lin C-C, Chen Y-C, Chang K-E, Lin T-H, Wang S-H, Lin N-H. 2020. Long-range air pollution transport in East Asia during the first week of the COVID-19 lockdown in China. Sci Total Environ. 741:140214. doi:10.1016/j.scitotenv.2020.140214
  • Guo H, Sahu SK, Kota SH, Zhang H. 2019. Characterization and health risks of criteria air pollutants in Delhi, 2017. Chemosphere. 225:27–34. doi:10.1016/j.chemosphere.2019.02.154.
  • Guttikunda SK, Jawahar P. 2012. Application of SIM-air modeling tools to assess air quality in Indian Cities. Atmos Environ. 62:551–561. doi:10.1016/j.atmosenv.2012.08.074
  • Guttikunda SK, Kopakka RV. 2014. Source emissions and health impacts of urban air pollution in Hyderabad, India. Air Qual Atmos Health. 7(2):195–207. doi:10.1007/s11869-013-0221-z
  • He H, Vinnikov KY, Li C, Krotkov NA, Jongeward AR, Li Z, Stehr JW, Hains JC, Dickerson RR. 2016. Response of SO2 and particulate air pollution to local and regional emission controls: a case study in Maryland. Earth’s Future. 4(4):94–109. doi:10.1002/2015EF000330
  • Heald CL, Jacob DJ, Park RJ, Alexander B, Fairlie TD, Yantosca RM, Chu DA. 2006. Transpacific transport of asian anthropogenic aerosols and its impact on surface air quality in the United States. J Geophys Res. 111(D14):1–13. doi:10.1029/2005JD006847
  • Hirsch R, Slack J, Smith R. 1982. Techniques of trend analysis for monthly water quality data. Water Resour Res. 18(1):107–121. doi:10.1029/WR018i001p00107
  • Hopke PK. 2021. Recent advances in air pollution mixture resolutions. Microchem J. 163(December 2020):105907. doi:10.1016/j.microc.2020.105907
  • Hsu Y-K, Holsen TM, Hopke PK. 2003. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos Environ. 37(4):545–562. doi:10.1016/S1352-2310(02)00886-5
  • India.com. 2021. “No Nationwide Lockdown: Centre Asks States to Implement Containment Measures Till May 31.” [accessed 2022 January 30]. https://www.india.com/news/india/india-complete-lockdown-news-today-april-30-2021-home-ministry-guidelines-to-states-india-coronavirus-latest-updates-4626042/.
  • Indian Express. 2022. Pollution Levels Drop in Mumbai, AQI Likely to Remain Moderate next 2 Days: SAFAR. Indian Express. [accessed 2022 May 30]. https://indianexpress.com/article/cities/mumbai/pollution-levels-drop-mumbai-aqi-moderate-safar-7928963/.
  • Itahashi S, Yamamura Y, Wang Z, Uno I. 2022. Returning long-range P transport into the leeward of East Asia in 2021 after Chinese economic recovery from the COVID-19 pandemic. Sci Rep. 12(1):5539–5511. doi:10.1038/s41598-022-09388-2.
  • Jain S, Sharma SK, Vijayan N, Mandal TK. 2020. Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: a four year study over Delhi, India. Environ Pollut. 262:114337. doi:10.1016/j.envpol.2020.114337
  • Jeričević A, Gašparac G, Mikulec MM, Kumar P, Prtenjak MT. 2019. Identification of diverse air pollution sources in a complex urban area of Croatia. J Environ Manage. 243(March):67–77. doi:10.1016/j.jenvman.2019.04.024.
  • Kara M, Hopke PK, Dumanoglu Y, Altiok H, Elbir T, Odabasi M, Bayram A. 2015. Characterization of PM using multiple site data in a heavily industrialized region of Turkey. Aerosol Air Qual Res. 15(1):11–27. doi:10.4209/aaqr.2014.02.0039
  • Kim E, Hopke PK, Edgerton ES. 2003. Source identification of Atlanta aerosol by positive matrix factorization. J Air Waste Manage Assoc. 53(6):731–739. doi:10.1080/10473289.2003.10466209
  • Kota SH, Guo H, Myllyvirta L, Hu J, Sahu SK, Garaga R, Ying Q, Gao A, Dahiya S, Wang Y, et al. 2018. Year-long simulation of gaseous and particulate air pollutants in India. Atmos Environ. 180:244–255. doi:10.1016/j.atmosenv.2018.03.003
  • Lai I, Chien, P, Brimblecombe. 2021. Long-range transport of air pollutants to Taiwan during the Covid-19 lockdown in Hubei Province. Aerosol Air Qual Res. 21(2):200392–200310. doi:10.4209/aaqr.2020.07.0392
  • Leili M, Naddafi K, Nabizadeh R, Yunesian M, Mesdaghinia A. 2008. The study of TSP and PM10 concentration and their heavy metal content in central area of Tehran, Iran. Air Qual Atmos Health. 1(3):159–166. doi:10.1007/s11869-008-0021-z
  • Li X, Song H, Zhai S, Lu S, Kong Y, Xia H, Zhao H. 2019. Particulate matter pollution in chinese cities: areal-temporal variations and their relationships with meteorological conditions. Environ Pollut. 246:11–18. doi:10.1016/j.envpol.2018.11.103.
  • Liu Z, Gao W, Yu Y, Hu B, Xin J, Sun Y, Wang L, Wang G, Bi X, Zhang G, et al. 2018. Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. Atmos Chem Phys. 18(12):8849–8871. doi:10.5194/acp-18-8849-2018
  • López-villarrubia E, Iñiguez C, Costa O, Ballester F. 2016. Acute effects of urban air pollution on respiratory emergency hospital admissions in the canary islands. Air Qual Atmos Health. 9(7):713–722. doi:10.1007/s11869-015-0382-z
  • Mahato S, Pal S, Ghosh KG. 2020. Science of the total environment effect of lockdown amid COVID-19 pandemic on air quality of the Megacity Delhi, India. Sci Total Environ. 730:139086. doi:10.1016/j.scitotenv.2020.139086.
  • Maji KJ, Arora M, Dikshit AK. 2017. Burden of disease attributed to ambient PM2.5 and PM10 exposure in 190 cities in China. Environ Sci Pollut Res Int. 24(12):11559–11572. doi:10.1007/s11356-017-8575-7.
  • Maji KJ, Arora M, Dikshit AK. 2018. Premature mortality attributable to PM2.5 exposure and future policy roadmap for ‘Airpocalypse’ affected Asian megacities. Process Saf Environ Protect. 118:371–383. doi:10.1016/j.psep.2018.07.009
  • Malley CS, Lefèvre EN. 2019. Measurement-based assessment of the regional contribution and drivers of reduction in annual and daily fine particulate matter impact metrics in Paris, France (2009–2018). Atmos Environ. 211(April):38–54. doi:10.1016/j.atmosenv.2019.04.061
  • Masiol M, Hopke PK, Felton HD, Frank BP, Rattigan OV, Wurth MJ, LaDuke GH. 2017. Analysis of major air pollutants and submicron particles in New York City and Long Island. Atmos Environ. 148:203–214. doi:10.1016/j.atmosenv.2016.10.043
  • Mendez-Espinosa JF, Belalcazar LC, Morales Betancourt R. 2019. Regional air quality impact of Northern South America biomass burning emissions. Atmos Environ. 203:131–140. doi:10.1016/j.atmosenv.2019.01.042
  • MHA. 2021. Containment framework. Chennai: MOHFW.
  • Mo Z, Huang J, Chen Z, Zhou B, Zhu K, Liu H, Mu Y, Zhang D, Wang S. 2021. Cause analysis of during the COVID-19 lockdown in Nanning, China. Sci Rep. 11(1):11119–11113. doi:10.1038/s41598-021-90617-5.
  • Morera-Gómez Y, Elustondo D, Lasheras E, Alonso-Hernández CM, Santamaría JM. 2018. Chemical characterization of PM10 samples collected simultaneously at a rural and an urban site in the caribbean coast: local and long-range source apportionment. Atmos Environ. 192:182–192. doi:10.1016/j.atmosenv.2018.08.058
  • Mukherjee A, Agrawal M. 2018. Assessment of local and distant sources of urban PM2.5 in Middle Indo-Gangetic plain of india using statistical modeling. Atmos Res. 213:275–287. doi: 10.1016/j.atmosres.2018.06.014
  • Panda S, Nagendra SMS. 2018. Chemical and morphological characterization of respirable suspended particulate matter (PM 10) and associated heath risk at a critically polluted industrial cluster. Atmos Pollut Res. 9(5):791–803. doi:10.1016/j.apr.2018.01.011
  • Perrone MR, Becagli S, Garcia Orza JA, Vecchi R, Dinoi A, Udisti R, Cabello M. 2013. The impact of long-range-transport on PM1 and PM2.5 at a central Mediterranean site. Atmos Environ. 71(2013):176–186. doi:10.1016/j.atmosenv.2013.02.006
  • Pitiranggon M, Johnson S, Haney J, Eisl H, Ito K. 2021. Long-term trends in local and transported PM2.5 pollution in New York City. Atmos Environ. 248(October 2020):118238. doi:10.1016/j.atmosenv.2021.118238
  • Rahaman S, Jahangir S, Chen R, Kumar P, Thakur S. 2021. Urban climate COVID-19’s lockdown effect on air quality in Indian cities using air quality zonal modeling. Urban Clim. 36(August 2020):100802. doi:10.1016/j.uclim.2021.100802
  • R Core Team. 2016. R: A language and environment for statistical Computing. Vienna Austria : R Foundation for Statistical Computing. [accessed 2019 October 22]. https://www.r-project.org/.
  • Saha A, Despiau S. 2009. Seasonal and diurnal variations of black carbon aerosols over a Mediterranean Coastal Zone. Atmos Res. 92(1):27–41. doi:10.1016/j.atmosres.2008.07.007
  • Sahu SK, Zhang H, Guo H, Hu J, Ying Q, Kota SH. 2019. Health risk associated with potential source regions of PM 2.5 in Indian cities. Air Qual Atmos Health. 12(3):327–340. doi:10.1007/s11869-019-00661-4
  • Sen A, Abdelmaksoud AS, Nazeer Ahammed Y, Alghamdi M ِ, Banerjee T, Bhat MA, Chatterjee A, Choudhuri AK, Das T, Dhir A, et al. 2017. Variations in particulate matter over Indo-Gangetic plains and Indo-Himalayan range during four field campaigns in winter monsoon and summer monsoon: role of pollution pathways. Atmos Environent. 154:200–224. doi:10.1016/j.atmosenv.2016.12.054
  • Singh J, Tyagi B. 2020. Transformation of air quality over a coastal tropical station Chennai during COVID-19 lockdown in India. Aerosol Air Qual Resarch. 21(4):1–12.
  • Singh N, Mhawish A, Deboudt K, Singh RS, Banerjee T. 2017. Organic aerosols over Indo-Gangetic plain: sources, distributions and climatic implications. Atmos Environ. 157:59–74. doi:10.1016/j.atmosenv.2017.03.008
  • Singh RP, Dey S, Tripathi SN, Tare V, Holben B. 2004. Variability of aerosol parameters over Kanpur, Northern India. J Geophys Res. 109(23206):1–14. doi:10.1029/2004JD004966
  • Singh RP, Chauhan A. 2020. Impact of lockdown on air quality in india during COVID-19 pandemic. Air Qual Atmos Health. 13(8):921–928. doi:10.1007/s11869-020-00863-1.
  • Singh V, Singh S, Biswal A. 2021. Exceedances and trends of particulate matter (PM2.5) in five indian megacities. Sci Total Environ. 750:141461. doi:10.1016/j.scitotenv.2020.141461.
  • Singh V, Singh S, Biswal A, Kesarkar AP, Mor S, Ravindra K. 2020. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ Pollut. 266(Part 3):115368. doi:10.1016/j.envpol.2020.115368.
  • Squizzato S, Masiol M. 2015. Application of meteorology-based methods to determine local and external contributions to particulate matter pollution: a case study in Venice (Italy). Atmos Environ. 119:69–81. doi:10.1016/j.atmosenv.2015.08.026
  • Srimuruganandam B, Shiva Nagendra SM. 2011a. Characteristics of particulate matter and heterogeneous traffic in the urban area of India. Atmos Environ. 45(18):3091–3102. doi:10.1016/j.atmosenv.2011.03.014
  • Srimuruganandam B, Shiva Nagendra SM. 2011b. Chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic. Sci Total Environ. 409(17):3144–3157. doi:10.1016/j.scitotenv.2011.04.042.
  • Stein AF, Draxler RR, Rolph GD, Stunder JB, Cohen MD, Ngan F. 2015. Noaa’s hysplit atmospheric transport and dispersion modeling system. Am Meteorol Soc. 96(12):2059–2077. doi:10.1175/BAMS-D-14-00110.1
  • Sumesh RK, Rajeevan K, Resmi EA, Unnikrishnan CK. 2017. Particulate matter concentrations in the southern tip of India: temporal variation, meteorological influences, and source identification. Earth Syst Environ. 1(2):1–18. doi:10.1007/s41748-017-0015-9.
  • Tian Y, Xiang X, Wu Y, Cao Y, Song J, Sun K, Liu H, Hu Y. 2017. Fine particulate air pollution and first hospital admissions for ischemic stroke in Beijing, China. Sci Rep. 7(1)1–8. doi:10.1038/s41598-017-04312-5
  • TN SDMA. 2022. Tamil Nadu State Disaster Management Authority. [accessed 2022 March 31]. https://tnsdma.tn.gov.in/pages/view/covid-19-lockdown-gos.
  • Uria-Tellaetxe I, Carslaw DC. 2014. Conditional bivariate probability function for source identification. Environ Modell Software. 59:1–9. doi:10.1016/j.envsoft.2014.05.002
  • Venkataraman C, Brauer M, Tibrewal K, Sadavarte P, Ma Q, Cohen A, Chaliyakunnel S, Frostad J, Klimont Z, Martin RV, et al. 2018. Source influence on emission pathways and ambient PM 2. 5 pollution over India (2015–2050). Atmos Chem Phys. 18(11):8017–8039. doi:10.5194/acp-18-8017-2018-supplement.
  • WHO. 2016. WHO Global Urban Ambient Air Pollution Database. World Health Organization (WHO). [accessed 2019 September 22]. https://www.who.int/phe/health_topics/outdoorair/databases/cities/en/.
  • Xie W, Li G, Zhao D, Xie X, Wei Z, Wang W, Wang M, Li G, Liu W, Sun J, et al. 2015. Relationship between fine particulate air pollution and ischaemic heart disease morbidity and mortality. Heart. 101(4):257–263. doi:10.1136/heartjnl-2014-306165
  • Yadav M, Soni K, Soni BK, Singh NK, Bamniya BR. 2019. Source apportionment of particulate matter, gaseous pollutants, and volatile organic compounds in a future smart city of India. Urban Climate. 28(March):100470. doi:10.1016/j.uclim.2019.100470
  • Yadav S, Tripathi SN, Rupakheti M. 2022. Current status of source apportionment of ambient aerosols in India. Atmos Environent. 274(August 2021):118987. doi:10.1016/j.atmosenv.2022.118987
  • Yao L, Yang L, Yuan Q, Yan C, Dong C, Meng C, Sui X, Yang F, Lu Y, Wang W. 2016. Sources apportionment of PM2.5 in a background site in the North China Plain. Sci Total Environ. 541:590–598. doi:10.1016/j.scitotenv.2015.09.123.
  • Yarahmadi M, Mostafa H, Seyed S, Seyed Saeed Hashemi N, Gea Oliveri C, Mohammd Reza A, Margherita F, Shahsavani A. 2018. Mortality assessment attributed to long-term exposure to fine particles in ambient air of the megacity of Tehran, Iran. Environ Sci Pollut Res Int. 25(14):14254–14262. doi:10.1007/s11356-018-1680-4
  • Zhang X, Ou X, Yang X, Qi T, Nam K-m, Zhang D, Zhang X. 2017. Socioeconomic burden of air pollution in China Province – level analysis based on energy economic model. Energy Econ. 68::47–489. doi:10.1016/j.eneco.2017.10.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.