117
Views
0
CrossRef citations to date
0
Altmetric
Articles

Characterization of PM10 bounded trace metals in industrial, traffic, and residential areas in Bac Giang, Vietnam: Environmental and health implications

ORCID Icon &
Pages 58-79 | Received 24 May 2022, Accepted 24 Oct 2022, Published online: 14 Nov 2022

References

  • Aboubakri O, Shoraka HR, Karamoozian A, Abedi Gheshlaghi L, Foroutan B. 2021. Seasonal impact of air particulate matter on morbidity: Interaction effect assessment in a time-stratified case-crossover design. Hum Ecol Risk Assess an Int J. 27(9–10):2328–2341. doi:10.1080/10807039.2021.1999204
  • Adeyeye MA, Akeredolu FA, Sonibare JA, Odekanle EL, Ajala DD, Zheng JJ, Chen K, Hui Yan X, Chen S-JJ, Hu G-CC, et al. 2016. Analysis of total particulate matter from a secondary steel smelting industry. Sci Total Environ. 4(1):30–34. doi:10.12691/jap-4-1-4
  • Aldabe J, Elustondo D, Santamaría C, Lasheras E, Pandolfi M, Alastuey A, Querol X, Santamaría JM. 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos Res. 102(1–2):191–205. doi:10.1016/j.atmosres.2011.07.003
  • Ambade B. 2014. Seasonal variation and sources of heavy metals in hilltop of Dongargarh, Central India. Urban Clim. 9:155–165. doi:10.1016/j.uclim.2014.08.001
  • Banerjee T, Murari V, Kumar M, Raju MP. 2015. Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos Res. 164–165:167–187. doi:10.1016/j.atmosres.2015.04.017
  • Bui TH, Nguyen TH, Ta TN, Vu VT, Nguyen TPM. 2020. Characterization and human health risk assessment of trace metal in PM10 in Bac Giang, short-term study in a developing province in Vietnam. Hum Ecol Risk Assess Int J. 26(7):1927–1946. doi:10.1080/10807039.2019.1623652
  • Cadle SH, Mulawa PA, Ball J, Donase C, Weibel A, Sagebiel JC, Knapp KT, Snow R. 1997. Particulate emission rates from in-use high-emitting vehicles recruited in Orange County, California. Environ Sci Technol. 31(12):3405–3412. doi:10.1021/es9700257
  • Cao J, Shen Z, Chow JC, Qi G, Watson JG. 2009. Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology. 7(3):161–168. doi:10.1016/j.partic.2009.01.009
  • Cao J-J, Zhu C-S, Chow JC, Watson JG, Han Y-M, Wang G, Shen Z, An Z-S. 2009. Black carbon relationships with emissions and meteorology in Xi’an, China. Atmos Res. 94(2):194–20. doi:10.1016/j.atmosres.2009.05.009
  • Cesari D, Contini D, Genga A, Siciliano M, Elefante C, Baglivi F, Daniele L. 2012. Analysis of raw soils and their re-suspended PM10 fractions: characterisation of source profiles and enrichment factors. Appl Geochem. 27(6):1238–1246. doi:10.1016/j.apgeochem.2012.02.029
  • Chandra Mouli P, Venkata Mohan S, Balaram V, Praveen Kumar M, Jayarama Reddy S. 2006. A study on trace elemental composition of atmospheric aerosols at a semi-arid urban site using ICP-MS technique. Atmos Environ. 40(1):136–146. doi:10.1016/j.atmosenv.2005.09.028
  • Cheng Y, Lee SC, Ho KF, Chow JC, Watson JG, Louie PKK, Cao JJ, Hai X. 2010. Chemically-speciated on-road PM2.5 motor vehicle emission factors in Hong Kong. Sci Total Environ. 408(7):1621–1627. 10.1016/j.scitotenv.2009.11.061.
  • Cheng Z, Chen L-J, Li H-H, Lin J-Q, Yang Z-B, Yang Y-X, Xu X-X, Xian J-R, Shao J-R, Zhu X-M. 2018. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Sci Total Environ. 619–620:621–629. 10.1016/j.scitotenv.2017.11.144.
  • Choi Y, Kim H, Lee J-T. 2018. Temporal variability of short term effects of PM10 on mortality in Seoul, Korea. Sci Total Environ. 644:122–128. 10.1016/j.scitotenv.2018.06.275.
  • Cohen DD, Crawford J, Stelcer E, Bac VT. 2010. Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmos Environ. 44(3):320–328. doi:10.1016/j.atmosenv.2009.10.037
  • Contini D, Genga A, Cesari D, Siciliano M, Donateo A, Bove MC, Guascito MR. 2010. Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmos Res. 95(1):40–54. doi:10.1016/j.atmosres.2009.07.010
  • European. 2005. Directive 2004/107/EC of the European parliament and of the council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. http://ec.europa.eu/environment/air/legis.htm.
  • Funasaka K, Sakai M, Shinya M, Miyazaki T, Kamiura T, Kaneco S, Ohta K, Fujita T. 2003. Size distributions and characteristics of atmospheric inorganic particles by regional comparative study in Urban Osaka, Japan. Atmos Environ. 37(33):4597–4605. doi:10.1016/j.atmosenv.2003.08.004
  • Galindo N, Clemente Á, Yubero E, Nicolás JF, Crespo J. 2021. PM10 chemical composition at a residential site in the western mediterranean: Estimation of the contribution of biomass burning from levoglucosan and its isomers. Environ Res. 196:110394. 10.1016/j.envres.2020.110394.
  • Garg BD, Cadle SH, Mulawa PA, Groblicki PJ, Laroo C, Parr GA. 2000. Brake wear particulate matter emissions. Environ Sci Technol. 34(21):4463–4469. doi:10.1021/es001108h
  • Gatari M, Wagner A, Boman J. 2005. Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya. Sci Total Environ. 341(1-3):241–249. 10.1016/j.scitotenv.2004.09.031.
  • Geiger A, Cooper J, Cooper, AG, J. 2010. Overview of airborne metals regulations. In: Exposure limits, health effects, and contemporary research, 1–50. doi:10.1212/01.CON.0000480843.89012.5b
  • Geiger A, Cooper J. 2010. Overview of airborne metal regulations. In: Exposure limits, health effects and contemporary research, 1–61.
  • Ghosh S, Rabha R, Chowdhury M, Padhy PK. 2018. Source and chemical species characterization of PM10 and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India. Chemosphere. 207:626–636. 10.1016/j.chemosphere.2018.05.133.
  • Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14(8):975–1001. doi:10.1016/0043-1354(80)90143-8
  • Harrison RM, Tilling R, Callén Romero MS, Harrad S, Jarvis K. 2003. A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos Environ. 37(17):2391–2402. doi:10.1016/S1352-2310(03)00122-5
  • Hien PD, Bac VT, Thinh NTH, Anh HL, Thang DD, Nghia NT. 2021. A comparison study of chemical compositions and sources of PM1.0 and PM2.5 in Hanoi. Aerosol Air Qual Res. 21(10):210056. doi:10.4209/aaqr.210056
  • Hien PD, Binh NT, Truong Y, Ngo NT. 1999. Temporal variations of source impacts at the receptor, as derived from air particulate monitoring data in Ho Chi Minh City, Vietnam. Atmos Environ. 33(19):3133–3142. doi:10.1016/S1352-2310(98)00337-9
  • International Agency for Research on Cancer (IARC). 2018. Agents classified by the IARC monographs, Volumes 1-121. IARC Monogr. (000050):1–25. doi:10.1007/s13398-014-0173-7.2
  • Izhar S, Goel A, Chakraborty A, Gupta T. 2016. Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere. 146:582–590. 10.1016/j.chemosphere.2015.12.039.
  • Jain S, Sharma SK, Mandal TK, Saxena M. 2018. Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology. 37:107–118. doi:10.1016/j.partic.2017.05.009
  • JECFA. 1993. Evaluation of certain food additives and contaminants: 41st report of the Joint FA/WHO expert committee on food additives. Technical Reports Series, No. 837. World Health Organization, Geneva.
  • Juda-Rezler K, Reizer M, Maciejewska K, Błaszczak B, Klejnowski K. 2020. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Sci Total Environ. 713:136729. 10.1016/j.scitotenv.2020.136729.
  • Kar S, Maity JP, Samal AC, Santra SC. 2010. Metallic components of traffic-induced urban aerosol, their spatial variation, and source apportionment. Environ Monit Assess. 168(1-4):561–574. 10.1007/s10661-009-1134-z.
  • Karar K, Gupta AK, Kumar A, Biswas AK. 2006. Characterization and Identification of the Sources of Chromium, Zinc, Lead, Cadmium, Nickel, Manganese and Iron in Pm10 Particulates at the Two Sites of Kolkata, India. Environ Monit Assess. 120(1–3):347–360. 10.1007/s10661-005-9067-7.
  • Karar K, Gupta AK. 2007. Source apportionment of PM10 at residential and industrial sites of an urban region of Kolkata. India. Atmos Res. 84(1). doi:10.1016/j.atmosres.2006.05.001
  • Karar K, Gupta AK. 2010. Erratum to Source apportionment of PM10 at residential and industrial sites of an urban region of Kolkata, India Atmos. Res. 96(4):665. doi:10.1016/j.atmosres.2010.02.006
  • Kim I, Lee K, Lee S, Kim SD. 2019. Characteristics and health effects of PM2.5 emissions from various sources in Gwangju, South Korea. Sci Total Environ. 696:133890. 10.1016/j.scitotenv.2019.133890.
  • Kleeman MJ, Schauer JJ, Cass GR. 2000. Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ Sci Technol. 34(7):1132–1142. doi:10.1021/es981276y
  • Kundu S, Stone EA. 2014. Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States. Environ Sci Process Impacts. 16(6):1360–1370. 10.1039/c3em00719g.
  • Lasun Tunde O, Owoade O, Olise F, Hopke P. 2016. Source identification and apportionment of PM2.5 and PM2.5–10 in iron and steel scrap smelting factory environment using PMF. PCFA and UNMIX receptor models. [Place Unknown]. doi:10.1007/s10661-016-5585-8
  • Li Q, Cheng H, Zhou T, Lin C, Guo S. 2012. The estimated atmospheric lead emissions in China, 1990–2009. Atmos Environ. 60:1–8. doi:10.1016/j.atmosenv.2012.06.025
  • Li W, Wang C, Wang H, Chen J, Yuan C, Li T, Wang W, Shen H, Huang Y, Wang R, et al. 2014. Distribution of atmospheric particulate matter (PM) in rural field, rural village and urban areas of northern China. Environ Pollut. 185:134–140. 10.1016/J.ENVPOL.2013.10.042.
  • Liu Y, Li S, Sun C, Qi M, Yu X, Zhao W, Li X. 2018. Pollution level and health risk assessment of PM2.5-bound metals in baoding city before and after the heating period. IJERPH. 15(10):2286–2217. doi:10.3390/ijerph15102286
  • Maykut NN, Lewtas J, Kim E, Larson TV. 2003. Source apportionment of PM 2.5 at an urban IMPROVE site in Seattle, Washington. Environ Sci Technol. 37(22). doi:10.1021/es030370y
  • Michael JG, Boman J, Wagner A, Janhäll S, Isakson J. 2006. Assessment of inorganic content of PM2.5 particles sampled in a rural area north-east of Hanoi, Vietnam. Sci Total Environ. 368(2-3):675–685. 10.1016/j.scitotenv.2006.04.004.
  • Morawska L, Zhang J. 2002. Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere. 49(9):1045–1058. doi:10.1016/S0045-6535(02)00241-2
  • Moreno T, Querol X, Alastuey A, Reche C, Cusack M, Amato F, Pandolfi M, Pey J, Richard A, Prévôt ASH, et al. 2011. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmos Chem Phys. 11(17):9415–9430. doi:10.5194/acp-11-9415-2011
  • Mori I, Nishikawa M, Iwasaka Y. 1998. Chemical reaction during the coagulation of ammonium sulphate and mineral particles in the atmosphere. Sci Total Environ. 224(1–3):87–91. doi:10.1016/S0048-9697(98)00323-4
  • Nguyen TPM, Bui TH, Nguyen MK, Nguyen TH, Vu VT, Pham HL. 2021. Impact of Covid-19 partial lockdown on PM2.5, SO2, NO2, O3, and trace elements in PM2.5 in Hanoi, Vietnam. Environ Sci Pollut Res. 29(28):41875–41885. doi:10.1007/s11356-021-13792-y
  • Nguyen TPM, Bui TH, Nguyen MK, Ta TN, Tran TMH, Nguyen YN, Nguyen TH. 2022. Assessing pollution characteristics and human health risk of exposure to PM 2.5 -bound trace metals in a suburban area in Hanoi, Vietnam. Hum Ecol Risk Assess an Int J. 28(3–4):1–22. doi:10.1080/10807039.2022.2056872
  • Ogundele LT, Owoade OK, Olise FS, Hopke PK. 2016. Source identification and apportionment of PM2.5 and PM2.5–10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. Environ Monit Assess. 188:574. doi:10.1007/s10661-016-5585-8
  • Ostapczuk P, Valenta P, Rützel H, Nürnberg HW. 1987. Application of differential pulse anodic stripping voltammetry to the determination of heavy metals in environmental samples. Sci Total Environ. 60:1–16. doi:10.1016/0048-9697(87)90403-7
  • Owoade KO, Hopke PK, Olise FS, Ogundele LT, Fawole OG, Olaniyi BH, Jegede OO, Ayoola MA, Bashiru MI. 2015. Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5–10) from a scrap iron and steel smelting industry along the Ife–Ibadan highway, Nigeria. Atmos Pollut Res. 6(1):107–119. doi:10.5094/APR.2015.013
  • Pant P, Harrison RM. 2013. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos Environ. 77:78–97. doi:10.1016/j.atmosenv.2013.04.028
  • Peng X, Shi GL, Zheng J, Liu JY, Shi XR, Xu J, Feng YC. 2016. Influence of quarry mining dust on PM2.5in a city adjacent to a limestone quarry: Seasonal characteristics and source contributions. Sci Total Environ. 550:940–949. 10.1016/j.scitotenv.2016.01.195.
  • Pfeiffer RL. 2005. Sampling for PM10 and PM2.5 particulates.
  • Pio C, Mirante F, Oliveira C, Matos M, Caseiro A, Oliveira C, Querol X, Alves C, Martins N, Cerqueira M, et al. 2013. Size-segregated chemical composition of aerosol emissions in an urban road tunnel in Portugal. Atmos Environ. 71:15–25. doi:10.1016/j.atmosenv.2013.01.037
  • Police S, Sahu SK, Pandit GG. 2016. Chemical characterization of atmospheric particulate matter and their source apportionment at an emerging industrial coastal city, Visakhapatnam, India. Atmos Pollut Res. 7(4):725–733. doi:10.1016/j.apr.2016.03.007
  • Ramadan Z, Song X-H, Hopke PK. 2000. Identification of sources of phoenix aerosol by positive matrix factorization. J Air Waste Manage Assoc. 50(8). doi:10.1080/10473289.2000.10464173
  • Rodriguez-Espinosa PF, Flores-Rangel RM, Mugica-Alvarez V, Morales-Garcia SS. 2017. Sources of trace metals in PM10from a petrochemical industrial complex in Northern Mexico. Air Qual Atmos Health. 10(1):69–84. doi:10.1007/s11869-016-0409-0
  • Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT. 1996. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ. 30(22):3837–3855. doi:10.1016/1352-2310(96)00085-4
  • Song X, Shao L, Zheng Q, Yang S. 2014. Mineralogical and geochemical composition of particulate matter (PM10) in coal and non-coal industrial cities of Henan Province, North China. Atmos Res. 143:462–472. doi:10.1016/j.atmosres.2014.03.015
  • Song X, Yang S, Shao L, Fan J, Liu Y. 2016. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Sci Total Environ. 571:1155–1163. 10.1016/j.scitotenv.2016.07.115.
  • Srithawirat T, Latif MT, Sulaiman FR. 2016. Indoor PM10 and its heavy metal composition at a roadside residential environment, Phitsanulok, Thailand. ATM. 29(4):311–322. doi:10.20937/ATM.2016.29.04.03
  • Taylor SR. 1964. Abundance of elements in the crust: A new table. Geochim Cosmochim Acta. 28(8):1273–1285. doi:10.1016/0016-7037(64)90129-2
  • Terzi E, Argyropoulos G, Bougatioti A, Mihalopoulos N, Nikolaou K, Samara C. 2010. Chemical composition and mass closure of ambient PM10 at urban sites. Atmos Environ. 44(18):2231–2239. doi:10.1016/j.atmosenv.2010.02.019
  • Thurston GD, Spengler JD. 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos Environ. 19(1):9–25. doi:10.1016/0004-6981(85)90132-5
  • Tian HZ, Wang Y, Xue ZG, Cheng K, Qu YP, Chai FH, Hao JM. 2010. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmos Chem Phys. 10(23):11905–11919. doi:10.5194/acp-10-11905-2010
  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunter. 33(1-4):566–575. doi:10.1007/BF02414780
  • USEPA. 1999. IO compendium of methods IO-3.1: compendium of method for the determination of inorganic compounds in ambient air: selection, preparation and extraction of filter material. EPA/625/R-96/010a, Cincinati, OH (June).
  • USEPA. 2001. Risk Assessment Guidance for Superfund (RAGS) Volume III – Part A: Process for Conducting Probabilistic Risk Assessment, Appendix B. Off Emerg Remedial Response US Environ Prot Agency. III (December):1–385.
  • USEPA. 2009. Risk assessment guidance for superfund Volume I: human health evaluation manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Off Superfund Remediat Technol Innov Environ Prot Agency. I. (January), 1–68. doi:https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1002UOM.TXT
  • USEPA. 2012. Regional Screening Level (RSL) Summery Table. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm., Accessed date: May 2018. (November):1–13. http://www.epa.gov/reg3hwmd/risk/human/rbconcentration_table/Generic_Tables/index.htm., Accessed date: 6 March 2017.
  • Vaio P, Di Magli E, Barbato F, Caliendo G, Cocozziello B, Corvino A, De Marco A, Fiorino F, Frecentese F, Onorati G, et al. 2016. Chemical composition of PM10at urban sites in naples (Italy). Atmosphere (Basel). 7(12):163. doi:10.3390/atmos7120163
  • Vicente AB, Pardo F, Sanfeliu T, Casalta S, Bech J. 2014. Assessment of PM10 and heavy metal concentration in a ceramic cluster (NE Spain) and the influence on nearby soils. J Geochemical Explor. 144(PB):320–327. doi:10.1016/j.gexplo.2013.12.015
  • Vincent K, Passant N. 2006. Assessment of heavy metal concentrations in the United Kingdom [place unknown].
  • Wang J, Hu Z, Chen Y, Chen Z, Xu S. 2013. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos Environ. 68(3663):221–229. doi:10.1016/j.atmosenv.2012.10.070
  • World Health Organization. 1993. Evaulation of certain food additives and contaminants: 41st report of the Joint FA/WHO expert committe on food additives. Geneva.
  • Wróbel A, Rokita E, Maenhaut W. 2000. Transport of traffic-related aerosols in urban areas. Sci Total Environ. 257(2-3):199–211. doi:10.1016/S0048-9697(00)00519-2
  • Xiaoyan S, Longyi S, Shushen Y, Riying S, Limei S, Shihong C. 2015. Trace elements pollution and toxicity of airborne PM10 in a coal industrial city. Atmos Pollut Res. 6(3):469–475. doi:10.5094/APR.2015.052
  • Xu J, Jia C, Yu H, Xu H, Ji D, Wang C, Xiao H, He J. 2021. Characteristics, sources, and health risks of PM2.5-bound trace elements in representative areas of Northern Zhejiang Province, China. Chemosphere. 272:129632. 10.1016/j.chemosphere.2021.129632.
  • Xu P, Chen Y, He S, Chen W, Wu L, Xu D, Chen Z, Wang X, Lou X. 2020. A follow-up study on the characterization and health risk assessment of heavy metals in ambient air particles emitted from a municipal waste incinerator in Zhejiang, China. Chemosphere. 246:125777. 10.1016/j.chemosphere.2019.125777.
  • Yi O, Hong Y-C, Kim H. 2010. Seasonal effect of PM10 concentrations on mortality and morbidity in Seoul, Korea: A temperature-matched case-crossover analysis. Environ Res. 110(1):89–95. 10.1016/j.envres.2009.09.009.
  • Yongyong Z, Ying J, Ming L, Li’an H. 2018. Characterization of metal(loid)s in indoor and outdoor PM2.5 of an office in winter period. Hum Ecol Risk Assess an Int J. 24(2):307–316. doi:10.1080/10807039.2017.1380514
  • Zhang J, Wu L, Fang X, Li F, Yang Z, Wang T, Mao H, Wei E. 2018. Elemental composition and health risk assessment of PM10 and PM2.5 in the roadside microenvironment in Tianjin, China. Aerosol Air Qual Res. 18(7):1817–1827. doi:10.4209/aaqr.2017.10.0383
  • Zhang Z-H, Khlystov A, Norford LK, Tan Z-K, Balasubramanian R. 2017. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications. Atmos Environ. 161:132–143. doi:10.1016/j.atmosenv.2017.04.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.