393
Views
2
CrossRef citations to date
0
Altmetric
Articles

Major ion hydrogeochemistry and health risk of groundwater nitrate in selected rural areas of the Guanzhong Basin, China

, ORCID Icon, , , &
Pages 701-727 | Received 30 Sep 2022, Accepted 27 Dec 2022, Published online: 04 Jan 2023

References

  • Adimalla N, Li P. 2019. Occurrence, health risks and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum Ecol Risk Assess. 25(1–2):81–103. doi:10.1080/10807039.2018.1480353.
  • Adimalla N, Li P, Qian H. 2019. Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: a special emphasis on human health risk assessment (HHRA). Hum Ecol Risk Assess. 25(5):1107–1124. doi:10.1080/10807039.2018.1460579.
  • Ali S, Thakur SK, Sarkar A, Shekhar S. 2016. Worldwide contamination of water by fluoride. Environ Chem Lett. 14(3):291–315. doi:10.1007/s10311-016-0563-5.
  • Amiri V, Li P, Bhattacharya P, Nakhaei M. 2021. Mercury pollution in the coastal Urmia aquifer in northwestern Iran: potential sources, mobility, and toxicity. Environ Sci Pollut Res. 28(14):17546–17562. doi:10.1007/s11356-020-11865-y.
  • Arega T. 2020. Sodium and potassium analysis of drinking water quality assessment and its health effects in Ethiopia: a retrospective study. J Oral Health Dent. 4(1):261–266.
  • Barakat A, Mouhtarim G, Saji R, Touhami F. 2020. Health risk assessment of nitrates in the groundwater of Beni Amir irrigated perimeter, Tadla plain, Morocco. Hum Ecol Risk Assess. 26(7):1864–1878. doi:10.1080/10807039.2019.1613631.
  • Balasooriya S, Munasinghe H, Herath AT, Diyabalanage S, Ileperuma OA, Manthrithilake H, Daniel C, Amann K, Zwiener C, Barth JAC, et al. 2020. Possible links between groundwater geochemistry and chronic kidney disease of unknown etiology (CKDu): an investigation from the Ginnoruwa region in Sri Lanka. Expo Health. 12(4):823–834. doi:10.1007/s12403-019-00340-w.
  • Ceballos E, Dubny S, Othax N, Zabala ME, Peluso F. 2021. Assessment of human health risk of chromium and nitrate pollution in groundwater and soil of the Matanza-Riachuelo River Basin, Argentina. Expo Health. 13(3):323–336. doi:10.1007/s12403-021-00386-9.
  • Chen J, Qian H, Li P. 2013. Mixing precipitation of CaCO3 in natural waters. Water. 5(4):1712–1722. doi:10.3390/w5041712.
  • Chen J, Wu H, Qian H. 2016. Groundwater nitrate contamination and associated health risk for the rural communities in an agricultural area of Ningxia, Northwest China. Expo Health. 8(3):349–359. doi:10.1007/s12403-016-0208-8.
  • Chen J, Qian H, Gao Y, Wang H, Zhang M. 2020. Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions. J Hydrol. 581:124386. doi:10.1016/j.jhydrol.2019.124386.
  • Chen J, Gao Y, Qian H, Ren W, Qu W. 2021. Hydrogeochemical evidence for fluoride behavior in groundwater and the associated risk to human health for a large irrigation plain in the Yellow River Basin. Sci Total Environ. 800:149428. doi:10.1016/j.scitotenv.2021.149428.
  • Choudhary M, Muduli M, Ray S. 2022. A comprehensive review on nitrate pollution and its remediation: conventional and recent approaches. Sustain Water Resour Manag. 8(4):113. doi:10.1007/s40899-022-00708-y.
  • D’Agostino F, Avellone G, Ceraulo L, Stefano VD, Indelicato S, Pica LL, Morici S, Vizzini S, Bongiorn D. 2021. Groundwater of sicily (Italy) close to landfill sites: quality and human health risk assessment. Expo Health. 13(3):535–550. doi:10.1007/s12403-021-00401-z.
  • Dissanayake CB. 1991. The fluoride problem in the ground water of Sri Lanka – environmental management and health. Int J Environ Stud. 38(2–3):137–155. doi:10.1080/00207239108710658.
  • Dou Y, Howard K, Yang L, Wang D, Guo L. 2016. Hydrochemistry of fluoride in groundwaters from the Permo–Triassic aquifer system of central Shaanxi Province, Northwest China. Expo Health. 8(3):419–429. doi:10.1007/s12403-016-0218-6.
  • Duan L, Wang W, Sun Y, Zhang C, Sun Y. 2020. Hydrogeochemical characteristics and health effects of iodine in groundwater in Wei River Basin. Expo Health. 12(3):369–383. doi:10.1007/s12403-020-00348-7.
  • Duan R, Li P, Wang L, He X, Zhang L. 2022. Hydrochemical characteristics, hydrochemical processes and recharge sources of the geothermal systems in Lanzhou City, northwestern China. Urban Clim. 43:101152. doi:10.1016/j.uclim.2022.101152.
  • Fida M, Li P, Wang Y, Alam SMK, Nsabimana A. 2022. Water contamination and human health risks in Pakistan: a review. Expo Health. doi:10.1007/s12403-022-00512-1.
  • Gaillardet J, Dupre B, Louvat P, Allegre CJ. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol. 159(1-4):3–30. doi:10.1016/S0009-2541(99)00031-5.
  • Gao Y, Chen J, Qian H, Wang H, Ren W, Qu W. 2022. Hydrogeochemical characteristics and processes of groundwater in an over 2260 year irrigation district: a comparison between irrigated and nonirrigated areas. J Hydrol. 606:127437. doi:10.1016/j.jhydrol.2022.127437.
  • Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science. 170(3962):1088–1090. doi:10.1126/science.170.3962.1088.
  • Gu W. 2011. Isotope Hydrology. Beijing: Science Press. (in Chinese).
  • Gugulothu S, Subba Rao N, Das R, Duvva LK, Dhakate R. 2022. Judging the sources of inferior groundwater quality and health risk problems through intake of groundwater nitrate and fluoride from a rural part of Telangana, India. Environ Sci Pollut Res. 29(32):49070–49091. doi:10.1007/s11356-022-18967-9.
  • Guo Y, Li P, He X, Wang L. 2022. Groundwater quality in and around a landfill in northwest China: characteristic pollutant identification, health risk assessment, and controlling factor analysis. Expo Health. 14(4):885–901. doi:10.1007/s12403-022-00464-6.
  • He S, Li P. 2020a. A MATLAB based graphical user interface (GUI) for quickly producing widely used hydrogeochemical diagrams. Geochemistry. 80(4):125550. doi:10.1016/j.chemer.2019.125550.
  • He X, Li P. 2020b. Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): occurrence, sources and health risks. Expo Health. 12(3):385–401. doi:10.1007/s12403-020-00344-x.
  • He X, Li P, Ji Y, Wang Y, Su Z, Elumalai V. 2020a. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: occurrence, distribution and management. Expo Health. 12(3):355–368. doi:10.1007/s12403-020-00347-8.
  • He S, Li P, Wu J, Elumalai V, Adimalla N. 2020b. Groundwater quality under land use/land cover changes: a temporal study from 2005 to 2015 in Xi’an, northwest China. Hum Ecol Risk Assess. 26(10):2771–2797. doi:10.1080/10807039.2019.1684186.
  • He S, Li P, Su F, Wang D, Ren X. 2022a. Identification and apportionment of shallow groundwater nitrate pollution in Weining Plain, northwest China, using hydrochemical indices, nitrate stable isotopes, and the new Bayesian stable isotope mixing model (MixSIAR). Environ Pollut. 298:118852. doi:10.1016/j.envpol.2022.118852.
  • He S, Wu J, Wang D, He X. 2022b. Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest. Chemosphere. 290:133388. doi:10.1016/j.chemosphere.2021.133388.
  • Ji Y, Wu J, Wang Y, Elumalai V, Subramani T. 2020. Seasonal variation of drinking water quality and human health risk assessment in Hancheng City of Guanzhong Plain, China. Expo Health. 12(3):469–485. doi:10.1007/s12403-020-00357-6.
  • Karunanidhi D, Aravinthasamy P, Subramani T, Wu J, Srinivasamoorthy K. 2019. Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River basin, South India. Hum Ecol Risk Assess. 25(1–2):250–270. doi:10.1080/10807039.2019.1568859.
  • Katla S, Gugulothu S, Dhakate R. 2021. Spatial assessment of major ion geochemistry in the groundwater around Suryapet Region, Southern Telangana, India. Environ Sustain. 4(1):107–122. doi:10.1007/s42398-020-00148-4.
  • Keesari T, Roy A, Pant D, Sinha UK, Kumar PVN, Rao LV. 2020. Major ion, trace metal and environmental isotope characterization of groundwater in selected parts of Uddanam coastal region, Andhra Pradesh, India. J Earth Syst Sci. 129(1):205. doi:10.1007/s12040-020-01467-0.
  • Kozisek F. 2014. Health and regulatory aspects of calcium and magnesium in drinking water. In: Razowska-Jaworek L, editor. Calcium and magnesium in groundwater: occurrence and significance for human health. Leiden: CRC Press. p. 135–145.
  • Li P. 2016. Groundwater quality in Western China: challenges and paths forward for groundwater quality research in Western China. Expo Health. 8(3):305–310. doi:10.1007/s12403-016-0210-1.
  • Li P. 2020. To make the water safer. Expo Health. 12(3):337–342. doi:10.1007/s12403-020-00370-9.
  • Li P-Y, Qian H, Wu J-H, Ding J. 2010. Geochemical modeling of groundwater in southern plain area of Pengyang County, Ningxia, China. Water Sci Eng. 3(3):282–291. doi:10.3882/j.issn.1674-2370.2010.03.004.
  • Li P, Qian H, Wu J, Chen J, Zhang Y, Zhang H. 2014. Occurrence and hydrogeochemistry of fluoride in shallow alluvial aquifer of Weihe River. Environ Earth Sci. 71(7):3133–3145. doi:10.1007/s12665-013-2691-6.
  • Li P, Zhang Y, Yang N, Jing L, Yu P. 2016a. Major ion chemistry and quality assessment of groundwater in and around a mountainous tourist town of China. Expo Health. 8(2):239–252. doi:10.1007/s12403-016-0198-6.
  • Li P, Wu J, Qian H. 2016b. Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China. Arab J Geosci. 9(1):15. doi:10.1007/s12517-015-2059-1.
  • Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P. 2016c. Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Expo Health. 8(3):331–348. doi:10.1007/s12403-016-0193-y.
  • Li P, Wu J, Qian H. 2016d. Preliminary assessment of hydraulic connectivity between river water and shallow groundwater and estimation of their transfer rate during dry season in the Shidi River, China. Environ Earth Sci. 75(2):99. doi:10.1007/s12665-015-4949-7.
  • Li P, Wu J, Tian R, He S, He X, Xue C, Zhang K. 2018. Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China. Mine Water Environ. 37(2):222–237. doi:10.1007/s10230-017-0507-8.
  • Li P, He X, Li Y, Xiang G. 2019a. Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese Loess Plateau: a case study of Tongchuan, northwest China. Expo Health. 11(2):95–107. doi:10.1007/s12403-018-0278-x.
  • Li P, He X, Guo W. 2019b. Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: a case study in Yan’an City on the Loess Plateau of northwest China. Hum Ecol Risk Assess. 25(1–2):11–31. doi:10.1080/10807039.2018.1553612.
  • Li P, Karunanidhi D, Subramani T, Srinivasamoorthy K. 2021. Sources and consequences of groundwater contamination. Arch Environ Contam Toxicol. 80(1):1–10. doi:10.1007/s00244-020-00805-z.
  • Li P, Wang D, Li W, Liu L. 2022a. Sustainable water resources development and management in large river basins: an introduction. Environ Earth Sci. 81(6):179. doi:10.1007/s12665-022-10298-9.
  • Li F, Wu J, Xu F, Yang Y, Du Q. 2022b. Determination of the spatial correlation characteristics for selected groundwater pollutants using the geographically weighted regression model: a case study in Weinan, Northwest China. Hum Ecol Risk Assess. doi:10.1080/10807039.2022.2124400.
  • Liu J, Han G. 2020. Distributions and source identification of the major ions in Zhujiang River, Southwest China: examining the relationships between human perturbations, chemical weathering, water quality and health risk. Expo Health. 12(4):849–862. doi:10.1007/s12403-020-00343-y.
  • Liu J, Gao M, Jin D, Wang T, Yang J. 2020. Assessment of groundwater quality and human health risk in the aeolian-sand area of Yulin City, Northwest China. Expo Health. 12(4):671–680. doi:10.1007/s12403-019-00326-8.
  • Liu L, Wu J, He S, Wang L. 2022. Occurrence and distribution of groundwater fluoride and manganese in the Weining Plain (China) and their probabilistic health risk quantification. Expo Health. 14(2):263–279. doi:10.1007/s12403-021-00434-4.
  • Marandi A, Shand P. 2018. Groundwater chemistry and the Gibbs Diagram. Appl Geochem. 97:209–212. doi:10.1016/j.apgeochem.2018.07.009.
  • Mathewson PD, Evans S, Byrnes T, Joos A, Naidenko OV. 2020. Health and economic impact of nitrate pollution in drinking water: a Wisconsin case study. Environ Monit Assess. 192(11):724. doi:10.1007/s10661-020-08652-0.
  • Mthembu PP, Elumalai V, Brindha K, Li P. 2020. Hydrogeochemical processes and trace metal contamination in groundwater: impact on human health in the Maputaland Coastal Aquifer, South Africa. Expo Health. 12(3):403–426. doi:10.1007/s12403-020-00369-2.
  • Nsabimana A, Li P. 2022. Hydrogeochemical characterization and appraisal of groundwater quality for industrial purpose using a novel industrial water quality index (IndWQI) in the Guanzhong Basin, China. Geochemistry. doi:10.1016/j.chemer.2022.125922.
  • Nsabimana A, Li P, He S, He X, Alam SMK, Fida M. 2021. Health risk of the shallow groundwater and its suitability for drinking purpose in Tongchuan, China. Water. 13(22):3256. doi:10.3390/w13223256.
  • Nsabimana A, Wu J, Wu J, Xu F. 2022a. Forecasting groundwater quality using automatic exponential smoothing model (AESM) in Xianyang City, China. Hum Ecol Risk Assess. doi:10.1080/10807039.2022.2087176.
  • Nsabimana A, Li P, Wang Y, Alam SMK. 2022b. Variation and multi-time-series prediction of total hardness in groundwater of the Guanzhong Plain (China) using grey Markov model. Environ Monit Assess. 194(12):899. doi:10.1007/s10661-022-10585-9.
  • Ozsvath DL. 2009. Fluoride and environmental health: a review. Rev Environ Sci Biotechnol. 8(1):59–79. doi:10.1007/s11157-008-9136-9.
  • Panneerselvam B, Karuppannan S, Muniraj K. 2021. Evaluation of drinking and irrigation suitability of groundwater with special emphasizing the health risk posed by nitrate contamination using nitrate pollution index (NPI) and human health risk assessment (HHRA). Hum Ecol Risk Assess. 27(5):1324–1348. doi:10.1080/10807039.2020.1833300.
  • Piper AM. 1944. A graphic procedure in the geochemical interpretation of water analysis. Trans AGU. 25(6):914–923. doi:10.1029/TR025i006p00914
  • Qian H, Li P. 2011. Mixing corrosion of CaCO3 in natural waters. E-J Chem. 8(3):1124–1131. doi:10.1155/2011/891053.
  • Qian H, Li P. 2012. Proportion dependent mixing effects of CaCO3 in natural waters. Asian J Chem. 24(5):2257–2261.
  • Qian H, Ma Z, Li P. 2012. Hydrogeochemsitry, 2nd ed.; Beijing: Geological Publishing House. (in Chinese).
  • Qian H, Wu J, Zhou Y, Li P. 2014. Stable oxygen and hydrogen isotopes as indicators of lake water recharge and evaporation in the lakes of the Yinchuan Plain. Hydrol Process. 28(10):3554–3562. doi:10.1002/hyp.9915.
  • Qin DJ, Turner JV, Pang ZH. 2005. Hydrogeochemistry and groundwater circulation in the Xi’an geothermal field, China. Geothermics. 34(4):471–494. doi:10.1016/j.geothermics.2005.06.004.
  • Rahmati O, Samani AN, Mahmoodi N, Mahdavi M. 2015. Assessment of the contribution of N-fertilizers to nitrate pollution of groundwater in Western Iran (case study: Ghorveh–Dehgelan Aquifer). Water Qual Expo Health. 7(2):143–151. doi:10.1007/s12403-014-0135-5.
  • Ravindra B, Subba Rao N, Dhanamjaya Rao EN. 2022. Groundwater quality monitoring for assessment of pollution levels and potability using WPI and WQI methods from a part of Guntur district, Andhra Pradesh, India. Environ Dev Sustain. doi:10.1007/s10668-022-02689-6.
  • Ren X, Li P, He X, Su F, Elumalai V. 2021. Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China. Arch Environ Contam Toxicol. 80(1):74–91. doi:10.1007/s00244-020-00772-5.
  • Salameh MTB, Alraggad M, Harahsheh ST. 2021. The water crisis and the conflict in the Middle East. Sustain Water Resour Manag. 7:69. doi:10.1007/s40899-021-00549-1.
  • Sathe SS, Mahanta C, Subbiah S. 2021. Hydrogeochemical evaluation of intermittent alluvial aquifers controlling arsenic and fluoride contamination and corresponding health risk assessment. Expo Health. 13(4):661–680. doi:10.1007/s12403-021-00411-x.
  • Shamsudduha M, Joseph G, Haque SS, Khan MR, Zahid A, Ahmed KMU. 2020. Multi-hazard groundwater risks to water supply from shallow depths: challenges to achieving the sustainable development goals in Bangladesh. Expo Health. 12(4):657–670. doi:10.1007/s12403-019-00325-9.
  • Singh B, Craswell E. 2021. Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Appl Sci. 3:518. doi:10.1007/s42452-021-04521-8.
  • Snousy MG, Li P, Ismail E. 2021. Trace elements speciation and sources characterization in the main watercourses, middle-upper Egypt. Hum Ecol Risk Assess. 27(7):1764–1785. doi:10.1080/10807039.2021.1902265.
  • Snousy MG, Wu J, Su F, Abdelhalim A, Ismail E. 2022. Groundwater quality and its regulating geochemical processes in Assiut Province, Egypt. Expo Health. 14(2):305–323. doi:10.1007/s12403-021-00445-1.
  • State Administration for Market Regulation of the PRC, Standardization Administration of the PRC. 2022. Standards for drinking water quality (GB5749-2022). Beijing: China Standard Press (in Chinese).
  • Su Y, Yu R, Tian M, Yang X, Ran L, Hu H, Zhang Z, Lu X. 2021. Major ion chemistry in the headwater region of the Yellow River: impact of land covers. Environ Earth Sci. 80:398. doi:10.1007/s12665-021-09692-6.
  • Su F, Wu J, Wang D, Zhao H, Wang Y, He X. 2022. Moisture movement, soil salt migration, and nitrogen transformation under different irrigation conditions: field experimental research. Chemosphere. 300:134569. doi:10.1016/j.chemosphere.2022.134569.
  • Subba Rao N. 2021. Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India. Environ Geochem Health. 43(2):971–993. doi:10.1007/s10653-020-00621-3.
  • Subba Rao N, Ravindra B, Wu J. 2020. Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur district, Andhra Pradesh, India. Hum Ecol Risk Assess. 26(9):2316–2348. doi:10.1080/10807039.2020.1741338.
  • Subba Rao N, Dinakar A, Kumari BK. 2021. Appraisal of vulnerable zones of non-cancer-causing health risks associated with exposure of nitrate and fluoride in groundwater from a rural part of India. Environ Res. 202:111674. doi:10.1016/j.envres.2021.111674.
  • Subba Rao N, Dinakar A, Sun L. 2022. Estimation of groundwater pollution levels and specific ionic sources in the groundwater, using a comprehensive approach of geochemical ratios, pollution index of groundwater, unmix model and land use/land cover – a case study. J Contam Hydrol. 248:103990. doi:10.1016/j.jconhyd.2022.103990.
  • Subba Rao N, Sunitha B, Das R, Kumar BA. 2022b. Monitoring the causes of pollution using groundwater quality and chemistry before and after the monsoon. Phys Chem Earth, Parts A/B/C. 128:103228. doi:10.1016/j.pce.2022.103228.
  • Torres-Martínez JA, Mora A, Mahlknecht J, Daesslé LW, Cervantes-Avilés PA, Ledesma-Ruiz R. 2021. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model. Environ Pollut. 269:115445. doi:10.1016/j.envpol.2020.115445.
  • Vithanage M, Bhattacharya P. 2015. Fluoride in the environment: sources, distribution and defluoridation. Environ Chem Lett. 13(2):131–147. doi:10.1007/s10311-015-0496-4.
  • Wang Y, Li P. 2022. Appraisal of shallow groundwater quality with human health risk assessment in different seasons in rural areas of the Guanzhong Plain (China). Environ Res. 207:112210. doi:10.1016/j.envres.2021.112210.
  • Wang D, Wu J, Wang Y, Ji Y. 2020. Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu County of Sichuan Province, China: analysis, assessment, and management. Expo Health. 12(2):307–322. doi:10.1007/s12403-019-00314-y.
  • Wang D, Li P, He X, He S. 2023. Exploring the response of shallow groundwater to precipitation in the northern piedmont of the Qinling Mountains, China. Urban Clim. 47:101379. doi:10.1016/j.uclim.2022.101379.
  • Wang R, Chen X, Li X. 2022a. Something in the pipe: the Flint water crisis and health at birth. J Popul Econ. 35(4):1723–1749. doi:10.1007/s00148-021-00876-9.
  • Wang L, Li P, Duan R, He X. 2022b. Occurrence, controlling factors and health risks of Cr6+ in groundwater in the Guanzhong Basin of China. Expo Health. 14(2):239–251. doi:10.1007/s12403-021-00410-y.
  • Wen D, Zhang F, Zhang E, Wang C, Han S, Zheng Y. 2013. Arsenic, fluoride and iodine in groundwater of China. J Geochem Explor. 135:1–21. doi:10.1016/j.gexplo.2013.10.012.
  • WHO. 2017. Guidelines for drinking-water quality, fourth edition incorporating the first addendum. Geneva: World Health Organization
  • Wu J, Li P, Qian H, Fang Y. 2014. Assessment of soil salinization based on a low-cost method and its influencing factors in a semi-arid agricultural area, northwest China. Environ Earth Sci. 71(8):3465–3475. doi:10.1007/s12665-013-2736-x.
  • Wu J, Li P, Qian H. 2015. Hydrochemical characterization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations. Environ Earth Sci. 73(12):8575–8588. doi:10.1007/s12665-015-4018-2.
  • Wu J, Zhou H, He S, Zhang Y. 2019. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau. Environ Earth Sci. 78(15):446. doi:10.1007/s12665-019-8471-1.
  • Wu J, Lu J, Zhang C, Zhang Y, Lin Y, Xu J. 2020a. Pollution, sources, and risks of heavy metals in coastal waters of China. Hum Ecol Risk Assess. 26(8):2011–2026. doi:10.1080/10807039.2019.1634466
  • Wu J, Li P, Wang D, Ren X, Wei M. 2020b. Statistical and multivariate statistical techniques to trace the sources and affecting factors of groundwater pollution in a rapidly growing city on the Chinese Loess Plateau. Hum Ecol Risk Assess. 26(6):1603–1621. doi:10.1080/10807039.2019.1594156.
  • Xiao Y, Liu K, Hao Q, Li Y, Xiao D, Zhang Y. 2022. Occurrence, controlling factors and health hazards of fluoride-enriched groundwater in the lower flood plain of Yellow River, Northern China. Expo Health. 14(2):345–358. doi:10.1007/s12403-021-00452-2.
  • Xu F, Li P, Chen W, He S, Li F, Mu D, Elumalai V. 2022a. Impacts of land use/land cover patterns on groundwater quality in the Guanzhong Basin of northwest China. Geocarto Int. doi:10.1080/10106049.2022.2115153.
  • Xu F, Li P, Du Q, Yang Y, Yue B. 2022b. Seasonal hydrochemical characteristics, geochemical evolution, and pollution sources of Lake Sha in an arid and semiarid region of Northwest China. Expo Health. doi:10.1007/s12403-022-00488-y.
  • Zhang F, Jin Z, Yu J, Zhou Y, Zhou L. 2015. Hydrogeochemical processes between surface and groundwaters on the northeastern Chinese Loess Plateau: implications for water chemistry and environmental evolutions in semi-arid regions. J Geochem Explor. 156:101–113. doi:10.1016/j.gexplo.2015.08.010.
  • Zhang Y, Wu J, Xu B. 2018. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ Earth Sci. 77(7):273. doi:10.1007/s12665-018-7456-9.
  • Zhang Q, Xu P, Qian H. 2020. Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of Northwest China. Expo Health. 12(3):487–500. doi:10.1007/s12403-020-00345-w.
  • Zhang Q, Li P, Lyu Q, Ren X, He S. 2022a. Groundwater contamination risk assessment using a modified DRATICL model and pollution loading: a case study in the Guanzhong Basin of China. Chemosphere. 291(Pt 1):132695. doi:10.1016/j.chemosphere.2021.132695.
  • Zhang L, Li P, He X. 2022b. Interactions between surface water and groundwater in selected tributaries of the Wei River (China) revealed by hydrochemistry and stable isotopes. Hum Ecol Risk Assess. 28(1):1–21. doi:10.1080/10807039.2021.2016054.
  • Zhang Z, Guo Y, Wu J, Su F. 2022c. Surface water quality and health risk assessment in Taizhou City, Zhejiang Province (China). Expo Health. 14(1):1–16. doi:10.1007/s12403-021-00408-6.
  • Zhao H, Song F, Su F, Shen Y, Li P. 2021. Removal of cadmium from contaminated groundwater using a novel silicon/aluminum nanomaterial: an experimental study. Arch Environ Contam Toxicol. 80(1):234–247. doi:10.1007/s00244-020-00784-1.
  • Zhao H, Li P, Su F, He X, Elumalai V. 2022. Adsorption behavior of aged polybutylece terephthalate microplastics coexisting with Cd(II)-tetracycline. Chemosphere. 301:134789. doi:10.1016/j.chemosphere.2022.134789.
  • Zhou Y, Ning J, Li L, Long Q, Wei A, Liu Z. 2020. Health risk assessment of groundwater in Gaobeidian, North China: distribution, source, and chemical species of the main contaminants. Expo Health. 12(3):427–446. doi:10.1007/s12403-020-00365-6.
  • Zhu L, Yang M, Chen X, Liu J. 2019. Health risk assessment and risk control: drinking groundwater in Yinchuan Plain, China. Expo Health. 11(1):59–72. doi:10.1007/s12403-017-0266-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.