250
Views
0
CrossRef citations to date
0
Altmetric
Articles

Risk assessment of toxic metals and groundwater quality assessment in an industrial hotspot of Bengaluru, India – case study

, , &
Pages 966-989 | Received 13 Sep 2022, Accepted 01 Jun 2023, Published online: 23 Jun 2023

References

  • Adimalla N, Qian H. 2019. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, South India. Ecotoxicol Environ Saf. 176:153–161. doi: 10.1016/j.ecoenv.2019.03.066.
  • APHA and AWWA. 2012. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC: American Public Health Association and American Water Works Association, Water Environment Federation.
  • Bhardwaj R, Gupta A, Garg JK. 2017. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci. 31(1):52–66. doi: 10.1016/j.wsj.2017.02.002.
  • BIS 10500: 2012. Drinking water specifications. Bureau of Indian Standards. New Delhi: Government of India.
  • Chaurasia AK, Pandey HK, Tiwari SK, Prakash R, Pandey P, Ram A. 2018. Groundwater quality assessment using Water Quality Index (WQI) in parts of Varanasi District, Uttar Pradesh, India. J Geol Soc India. 92(1):76–82. doi: 10.1007/s12594-018-0955-1.
  • Elemile OO, Ibitogbe EM, Folorunso OP, Ejiboye PO, Adewumi JR. 2021. Principal component analysis of groundwater sources pollution in Omu-Aran Community, Nigeria. Environ Earth Sci. 80(20):690. doi: 10.1007/s12665-021-09975-y.
  • El-Kholy RA, Zaghlool E, Isawi H, Soliman EA, Khalil MMH, El-Aassar A-HM, Said MM. 2022. Groundwater quality assessment using water quality index and multivariate statistical analysis case study: east Matrouh, Northwestern coast, Egypt. Environ Sci Pollut Res Int. 29(43):65699–65722. doi: 10.1007/s11356-022-19761-3.
  • Farnham IM, Singh AK, Stetzenbach KJ, Johannesson KH. 2002. Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemom Intell Lab Syst. 60(1-2):265–281. doi: 10.1016/S0169-7439(01)00201-5.
  • Gaikwad SK, Gaikwad S, Meshram D, Wagh V, Kandekar A, Kadam A. 2020. Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: implication to groundwater quality. Environ Dev Sustain. 22(3):2591–2624. doi: 10.1007/s10668-019-00312-9.
  • He X, Wu J, He S. 2019. Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in luohe aquifer in Wuqi County of the Chinese Loess Plateau, North-West China. Human Ecol Risk Assess. 25(1-2):32–51. doi: 10.1080/10807039.2018.1531693.
  • Hellerich LA, Nikolaidis NP, Dobbs GM. 2008. Evaluation of the potential for the natural attenuation of hexavalent chromium within a sub-wetland ground water. J Environ Manage. 88(4):1513–1524. doi: 10.1016/j.jenvman.2007.07.032.
  • Helsel DR. 2012. Statistics for censored environmental data using Minitab and R. Hoboken, NJ: Wiley. doi: 10.1002/9781118162729.
  • Helsel DR, Hirsch RM, Ryberg KR, Archfield SA. 2020. Statistical methods in water resources. U.S. Geol Survey Tech Methods. doi: 10.3133/tm4A3.
  • Horton RK. 1965. An index number system for rating water quality. J Water Pollut Control Fed. 37(3):300–306.
  • Kadam A, Wagh V, Jacobs J, Patil S, Pawar N, Umrikar B, Sankhua R, Kumar S. 2022. Integrated approach for the evaluation of groundwater quality through hydro geochemistry and human health risk from Shivganga river basin, Pune, Maharashtra, India. Environ Sci Pollut Res Int. 29(3):4311–4333. doi: 10.1007/s11356-021-15554-2.
  • Kadam A, Wagh V, Umrikar B, Sankhua R. 2020. An implication of boron and fluoride contamination and its exposure risk in groundwater resources in semi-arid region, Western India. Environ Dev Sustain. 22(7):7033–7056. doi: 10.1007/s10668-019-00527-w.
  • Kamunda C, Mathuthu M, Madhuku M. 2016. Health risk assessment of heavy metals in soils from witwatersrand gold mining Basin, South Africa. IJERPH. 13(7):663. doi: 10.3390/ijerph13070663.
  • Karim Z. 2011. Risk assessment of dissolved trace metals in drinking water of Karachi, Pakistan. Bull Environ Contam Toxicol. 86(6):676–678. doi: 10.1007/s00128-011-0261-8.
  • Karunanidhi D, Aravinthasamy P, Subramani T, Kumar D, Venkatesan G. 2021. Chromium contamination in groundwater and Sobol sensitivity model based human health risk evaluation from leather tanning industrial region of South India. Environ Res. 199:111238. doi: 10.1016/j.envres.2021.111238.
  • Khamis H. 2008. Measures of association: how to choose? J Diagn Med Sonogr. 24(3):155–162. doi: 10.1177/8756479308317006.
  • Krishna AK, Mohan KR, Dasaram B. 2019. Assessment of groundwater quality, toxicity and health risk in an industrial area using multivariate statistical methods. Environ Syst Res. 8(1):26. doi: 10.1186/s40068-019-0154-0.
  • Kumar SPJ, Delson DP, Vernon JG, James EJ. 2013. A linear regression model (LRM) for groundwater chemistry in and around the Vaniyambadi industrial area, Tamil Nadu, India. Chin J Geochem. 32(1):19–26. doi: 10.1007/s11631-013-0602-x.
  • Kumar AR, Riyazuddin P. 2011. Chromium speciation in a contaminated groundwater: redox processes and temporal variability. Environ Monit Assess. 176(1-4):647–662. doi: 10.1007/s10661-010-1610-5.
  • Li P, Li X, Meng X, Li M, Zhang Y. 2016. Appraising groundwater quality and health risks from contamination in a semiarid region of northwest China. Expo Health. 8(3):361–379. doi: 10.1007/s12403-016-0205-y.
  • Liu J, Peng Y, Li C, Gao Z, Chen S. 2021. A characterization of groundwater fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China. Ecotoxicol Environ Saf. 207:111512. doi: 10.1016/j.ecoenv.2020.111512.
  • McGrory E, Holian E, Morrison L. 2020. Assessment of groundwater processes using censored data analysis incorporating non-detect chemical, physical, and biological data. J Contam Hydrol. 235:103706. doi: 10.1016/j.jconhyd.2020.103706.
  • Mehmood, Khalid, Ahmad, Hamaad Raza, Saifullah. 2019. Quantitative assessment of human health risk posed with chromium in waste, ground, and surface water in an industrial hub of Pakistan. Arab J Geosci. 12:283. doi: 10.1007/s12517-019-4470-5.
  • More S, Dhakate R, Ratnalu GV, Machender G. 2021. Hydrogeochemistry and health risk assessment of groundwater and surface water in fluoride affected area of Yadadri-Bhuvanagiri District, Telangana State, India. Environ Earth Sci. 80(7): 1–18. doi: 10.1007/s12665-021-09544-3.
  • National Green Tribunal order 1038. 2019. [accessed on 2020 January 31]. https://www.greentribunal.gov.in/Writereaddata/Downloads/1038-2018(PB-1)OA_14.11.19.pdf.
  • Palmer CD, PuIs RW. 1994. EPA ground water issue – natural attenuation of hexavalent chromium in groundwater and soils. USEPA. [accessed on 2022 September] https://www.epa.gov/remedytech/natural-attenuation-hexavalent-chromium-groundwater-and-soils.
  • Piper AM. 1944. A graphic procedure in the geochemical interpretation of water analysis. Trans AGU. 25(6):914–928. doi: 10.1029/TR025i006p00914.
  • Pius A, Jerome C, Sharma N. 2012. Evaluation of groundwater quality in and around Peenya industrial area of Bangalore, South India using GIS techniques. Environ Monit Assess. 184(7):4067–4077. doi: 10.1007/s10661-011-2244-y.
  • Rakib MA, Quraishi SB, Newaz MA, Sultana J, Bodrud-Doza M, Rahman MA, Patwar MA, Bhuiyan MA. 2022. Groundwater quality and human health risk assessment in selected coastal and floodplain areas of Bangladesh. J Contam Hydrol. 249:104041. doi: 10.1016/j.jconhyd.2022.104041.
  • Ramesh A, Prakash BN, Sivapullaiaih PV. 2013. Identification of source of heavy metal contamination in a site – a case study. IJEP. 51(1/2):91–105. doi: 10.1504/IJEP.2013.053183.
  • Rao NS, Chaudhary M. 2019. Hydrogeochemical processes regulating the spatial distribution of groundwater contamination, using pollution index of groundwater (PIG) and hierarchical cluster analysis (HCA): a case study. Groundwater Sustain Dev. 9(3):100238. doi: 10.1016/j.gsd.2019.100238.
  • Rao GT, Rao VVSG, Ranganathan K. 2013. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu. India. J Earth Syst Sci. 122(3):855–867. doi: 10.1007/s12040-013-0295-x.
  • Rao GT, Rao VVSG, Ranganathan K, Surinaidu L, Mahesh J, Ramesh G. 2011. Assessment of groundwater contamination from a hazardous dump site in Ranipet, Tamil Nadu, India. Hydrogeol J. 19(8):1587–1598. doi: 10.1007/s10040-011-0771-9.
  • Rehman K, Fatima F, Waheed I, Akash MSH. 2018. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 119(1):157–184. doi: 10.1002/jcb.26234.
  • Saha P, Paul B. 2019. Groundwater quality assessment in an industrial hotspot through interdisciplinary techniques. Environ Monit Assess. 191(S2):326. doi: 10.1007/s10661-019-7418-z.
  • Selmane T, Dougha M, Hasbaia M, Ferhati A, Redjem A. 2022. Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher region of Hodna, northern Algeria. Acta Geochim. 41(5):893–909. doi: 10.1007/s11631-022-00553-y.
  • Selvam S, Jesuraja K, Roy PD, Venkatramanan S, Khan R, Shukla S, Manimaran D, Muthukumar P. 2022. Human health risk assessment of heavy metal and pathogenic contamination in surface water of the Punnakayal estuary, South India. Chemosphere. 298:134027. doi: 10.1016/j.chemosphere.2022.134027.
  • Shalyari N, Alinejad A, Hashemi A, Radfard M, Dehghani M. 2019. Health risk assessment of nitrate in groundwater resources of Iranshahr using Monte Carlo simulation and geographic information system (GIS). MethodsX. 6:1812–1821. doi: 10.1016/j.mex.2019.07.024.
  • Shankar BS. 2019. A critical assay of heavy metal pollution index for the groundwaters of Peenya Industrial Area, Bangalore, India. Environ Monit Assess. 191(5):289. doi: 10.1007/s10661-019-7453-9.
  • Shankar BS, Balasubramanya N, Reddy MT. 2008. Impact of industrialization on groundwater quality – a case study of Peenya industrial area, Bangalore, India. Environ Monit Assess. 142(1-3):263–268. doi: 10.1007/s10661-007-9923-8.
  • Truex MJ, Szecsody E, Qafoku N, Sahajpal PR, Zhong L, Lawter AR, Lee BD. 2015. Assessment of hexavalent chromium natural attenuation for the Hanford Site 100 area. Prepared for the U.S. Department of Energy under Contract.
  • Tumolo M, Volpe A, Leone N, Cotugno P, De Paola D, Losacco D, Locaputo V, de Pinto MC, Uricchio VF, Ancona V. 2022. Enhanced natural attenuation of groundwater Cr (VI) pollution using electron donors: yeast extract vs. polyhydroxybutyrate. IJERPH. 19(15):9622. doi: 10.3390/ijerph19159622.
  • Tyagi S, Sharma B, Singh P, Dobhal R. 2013. Water quality assessment in terms of water quality index. AJWR. 1(3):34–38. doi: 10.12691/ajwr-1-3-3.
  • USEPA (United States Environmental Protection Agency). 1989. Risk assessment guidance for superfund, Volume I: human health evaluation manual (part A), interim final. Office of Emergency and Remedial Response.
  • USEPA. 2004. Risk assessment guidance for superfund, Volume I: human health evaluation manual (part E, supplemental guidance for dermal risk assessment). EPA/540/R/99/005, Washington.
  • USEPA. 2014. Human health evaluation manual, supplemental guidance: update of standard default exposure factors, OSWER Directive 9200.1-120.
  • Wagh V, Mukate S, Muley A, Kadam A, Panaskar D, Varade A. 2020. Study of groundwater contamination and drinking suitability in basaltic terrain of Maharashtra, India through PIG and multivariate statistical techniques. J Water Sup Res Tech Aqua. 69(4):398–414. doi: 10.2166/aqua.2020.108.
  • Wagh VM, Mukate SV, Panaskar DB, Muley AA, Sahu LU. 2019. Study of groundwater hydrochemistry and drinking suitability through Water Quality Index (WQI) modelling in Kadava river basin, India. SN Appl Sci. 1(10):1251. doi: 10.1007/s42452-019-1268-8.
  • Wagh VM, Panaskar DB, Jacobs JA, Mukate SV, Muley AA, Kadam AK. 2019. Influence of hydro-geochemical processes on groundwater quality through geostatistical techniques in Kadava River basin, Western India. Arab J Geosci. 12(1):7. doi: 10.1007/s12517-018-4136-8.
  • Williams M, Todd GD, Roney N. 2012. Toxicological profile for manganese. Atlanta (GA): Agency for Toxic Substances and Disease Registry. https://www.ncbi.nlm.nih.gov/books/NBK158868/.
  • Woolf A, Wright R, Amarasiriwardena C, Bellinger D. 2002. A child with chronic manganese exposure from drinking water. Environ Health Perspect. 110(6):613–616. doi: 10.1289/ehp.02110613.
  • Wu J, Sun Z. 2016. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, Mid-west China. Expo Health. 8(3):311–329. doi: 10.1007/s12403-015-0170-x.
  • Zakir HM, Sharmin S, Akter A, Rahman MS. 2020. Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: a case study of Jamalpur Sadar area, Bangladesh. Environ. 2:100005. doi: 10.1016/j.envadv.2020.100005.
  • Zohre M, Abooalfazl A. 2021. Health risk assessment of nitrate in drinking water in Shiraz using probabilistic and deterministic approaches and impact of water supply. Environ Challenges. 5:100326. doi: 10.1016/j.envc.2021.100326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.