222
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Biochemical changes induced by salt stress in halotolerant bacterial isolates are media dependent as well as species specific

&

References

  • Cavicchioli, R.; Amils, R.; Wagner, D.; McGenity, T. Life and Applications of Extremophiles. Environ. Microbiol. 2011, 13, 1903–1907.
  • Ma, Y.; Galinski, E.A.; Grant, W.D.; Oren, A.; Ventosa, A. Halophiles 2010: Life in Saline Environments. Appl. Environ. Microbiol. 2010, 76, 6971–6981.
  • Galinski, E.A.; Truper, H.G. Microbial Behavior in Salt Stressed Ecosystems. FEMS Microbiol. Rev. 1994, 15, 95–108.
  • Kushner, D.J. Life in High Salt and Solute Concentrations: Halophilic Bacteria. In Microbial Life in Extreme Environments, Kushner, D.J., ed. Academic Press: London, UK, 1978; pp. 317–368.
  • Ventosa, A.; Nieto, J.J.; Oren, A. Biology of Moderately Halophilic Aerobic Bacteria. Microbiol. Mol. Biol. Rev. 1998, 62, 504–544.
  • Lentzen, G.; Schwarz, T. Extremolytes: Natural Compounds From Extremophiles for Versatile Applications. Appl. Microbiol. Biotechnol. 2006, 72, 623–634.
  • Margesin, R.; Schinner, F. Potential of Halotolerant and Halophilic Microorganisms for Biotechnology. Extremophiles 2001, 5, 73–83.
  • Shivanand, P.; Jayaraman, G. Production of Extracellular Protease From Halotolerant Bacterium, Bacillus aquimaris strain VITP4 Isolated From Kumta Coast. Process Biochem. 2009, 44, 1088–1094.
  • Rameshpathy, M.; Jayaraman, G.; Devirajeswari, V.; Vickram, A.S.; Sridharan, T.B. Emergence of a Multidrug Resistant Halomonas hydrothermalis Strain VITP09, Producing a Class-A β-Lactamase, Isolated From Kumta Coast. Int. J. Pharm. Pharm. Sci. 2012, 4, 639–644.
  • Subramanian, S.; Sam, S.; Jayaraman, G. Hexavalent Chromium Reduction by Metal Resistant and Halotolerant Planococcus maritimus VITP21. Afr. J. Microbiol. Res. 2012, 6, 7339–7349.
  • Devirajeswari, V.; Jayaraman, G.; Rameshpathy, M.; Sridharan, T.B. Production and Characterization of Extracellular Protease From Halotolerant Bacterium Virgibacillus dokdonensis VITP14. Res. J. Biotechnol. 2012, 7, 38–43.
  • Rainey, F.A.; Oren, A. Methods in Microbiology: Extremophiles. Academic Press: San Diego, CA, 2006.
  • Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356.
  • Hwang, M.N.; Ederer, G.M. Rapid Hippurate Hydrolysis Method for Presumptive Identification of Group B Streptococci. J. Clin. Microbiol. 1975, 1, 114–115.
  • Lai, M.C.; Yang, D.R.; Chuang, M.J. Regulatory Factors Associated With Synthesis of the Osmolyte Glycine Betaine in the Halophilic Methanoarchaeon Methanohalophilus portucalensis. Appl. Environ. Microbiol. 1999, 65, 828–833.
  • Roberts, M.F. Organic Compatible Solutes of Halotolerant and Halophilic Microorganisms. Saline Systems 2005, 1, 5.
  • Chambers, S.T.; Kunin, C.M. Isolation of Glycine Betaine and Proline Betaine From Human Urine. Assessment of Their Role as Osmoprotective Agents for Bacteria and the Kidney. J. Clin. Invest. 1987, 79, 731–737.
  • Bursy, J.; Pierik, A.J.; Pica, N.; Bremer, E. Osmotically Induced Synthesis of the Compatible Solute Hydroxyectoine Is Mediated by an Evolutionarily Conserved Ectoine Hydroxylase. J. Biol. Chem. 2007, 282, 31147–31155.
  • Kurz, M.; Burch, A.Y.; Seip, B.; Lindow, S.E.; Gross, H. Genome-Driven Investigation of Compatible Solute Biosynthesis Pathways of Pseudomonas syringae pv. syringae and Their Contribution to Water Stress Tolerance. Appl. Environ. Microbiol. 2010, 76, 5452–5462.
  • Stephanopoulos, G.N.; Aristidou, A.A.; Nielson, J. Metabolic Engineering Principles and Methodologies. Academic Press: San Diego, CA, 1998.
  • Empadinhas, N.; da Costa, M.S. Diversity, Distribution and Biosynthesis of Compatible Solutes in Prokaryotes. Contrib. Sci. 2009, 5, 95–105.
  • Pastor, J.M.; Salvador, M.; Argandona, M.; Bernal, V.; Reina-Bueno, M.; Csonka, L.N.; Iborra, J.L.; Vargas, C.; Nieto, J.J.; Canovas, M. Ectoines in Cell Stress Protection: Uses and Biotechnological Production. Biotechnol. Adv. 2010, 28, 782–801.
  • Dulaney, E.L.; Dulaney, D.D.; Rickes, E.L. Factors in Yeast Extract Which Relieve Growth Inhibition of Bacteria in Defined Medium of High Osmolarity. Dev. Ind. Microbiol. 1968, 9, 260–269.
  • Oren, A. Bioenergetic Aspects of Halophilism. Micro. Mol. Biol. Rev. 1999, 63, 334–348.
  • Pfluger, K.; Muller, V. Transport of Compatible Solutes in Extremophiles. J. Bioenerg. Biomembr. 2004, 36, 17–24.
  • Welsh, B.T. Ecological Significance of Compatible Solute Accumulation by Micro-Organisms: From Single Cells to Global Climate. FEMS Microbiol. Rev. 2000, 24, 263–290.
  • Saum, S.H.; Muller, V. Regulation of Osmoadaptation in the Moderate Halophile Halobacillus halophilus: Chloride, Glutamate and Switching Osmolyte Strategies. Saline System. 2008, 4, 4.
  • Joghee, N.N.; Gurunathan, J. Planococcus maritimus VITP21 Synthesizes (2-Acetamido-2-deoxy-α-D-glucopyranosyl)-(1→2)-β-D-fructofuranose under Osmotic Stress: A Novel Protein Stabilizing Sugar Osmolyte. Carbohydr. Res. 2014, 383, 76–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.