310
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Streptomyces sp. TEM 33 possesses high lipolytic activity in solid-state fermentation in comparison with submerged fermentation

, &

References

  • Gunasekaran, V.; Das, D. Lipase Fermentation: Progress and Prospects. Indian J. Biotechnol. 2004, 4, 437–445.
  • Thomas, L.; Larroche, C.; Pandey, A. Current Developments in Solid-State Fermentation. Biochem. Eng. J. 2013, 81, 146–161.
  • Ellaiah, P.; Srinivasulu, B.; Adinarayana, K. Optimization Studies on Neomycin Production by a Mutant Strain of Streptomyces marinensis in Solid State Fermentation. Process Biochem. 2002, 38, 615–620.
  • Jaeger, K.E.; Eggert, T. Lipases for Biotechnology. Curr. Opin. Biotechnol. 2002, 13, 390–397.
  • Benjamin, S.; Pandey, A. Candida rugosa Lipases: Molecular Biology and Versatility in Biotechnology. Yeast 1998, 14, 1069–1087.
  • Fernandes, M.L.M.; Saad, E.B.; Meira, J.A.; Ramos, L.P.; Mitchell, D.A.; Krieger, N. Esterification and Transesterification Reactions Catalysed by Addition of Fermented Solids to Organic Reaction Media. J. Mol. Catal. B Enzym. 2007, 44, 8–13.
  • Miurat, A.M.; Stinebring, W.R.; Schaffner, C.P.; Lechevalier, H. Screening for Antibiotics Active Against Intracellular Bacteria. Appl. Microbiol. 1959, 7, 109–112.
  • Rapp, P.; Backhaus, S. Formation of Extracellular Lipases by Filamentous Fungi, Yeasts, and Bacteria. Enzyme Microbial Technol. 1992, 14, 938–943.
  • Kim, H.J.; Lee, S.C.; Hwang, B.K. Streptomyces cheonanensis sp. nov., a Novel Streptomycete With Antifungal Activity. Int. J. Sys. Evol. Microbiol. 2006, 56, 471–475.
  • Concon, J.M.; Soltess, D. Rapid Micro Kjeldahl Digestion of Cereal Grains and Other Biological Materials. Anal. Biochem. 1973, 53, 35–41.
  • Wrinkler, U.K.; Stuckmann, M. Glycogen, Hyaluronate and some Other Polysaccharides Greatly Enhance the Formation of Exolipase by Serratia marcescens. J. Bacteriol. 1979, 138, 663–670.
  • Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428.
  • Nelson, N. Nelson’s Method for Quantitative Determination of Reducing Power of Carbohydrates. J Biol Chem 1944, 153, 375–380.
  • Nagy, V.; Toke, E.R.; Keong, L.C.; Szatzker, G.; Ibrahim, D.; Omar, I.C.; Szakacs, G.; Poppe, L. Kinetic Resolutions With Novel, Highly Enantioselective Fungal Lipases Produced by Solid State Fermentation. J. Mol. Catal. B Enzym. 2006, 39, 141–148.
  • Abramic, M.; Lescic, I.; Korica, T.; Vitale, L.; Saenger, W.; Pigac, J. Purification and Properties of Extracellular Lipase From Streptomycess rimosus. Enzyme Microbial Technol. 1999, 25, 522–529.
  • Archana, A.; Satyanarayana, T. Xylanase Production by Thermophilic Bacillus licheniformis A99 in Solid-State Fermentation. Enzyme Microbial Technol. 1997, 21, 12–17.
  • Tan, T.; Zhang, M.; Wang, B.; Ying, C.; Deng, L. Screening Of High Lipase Producing Candida sp. and Production of Lipase by Fermentation. Process Biochem. 2003, 39, 459–465.
  • Li, C.; Cheng, C.; Chen, T. Fed-Batch Production of Lipase by Acinetobacter radioresistens Using Tween 80 as Carbon Source. Biochem. Eng. J. 2004, 19(1):25–31.
  • Tamalampudi, S.; Talukder, M.R.; Hama, S.; Numatab, T.; Kondo, A.; Fukuda, H. Enzymatic Production of Biodiesel From Jatropha Oil: A Comparative Study of Immobilized Whole Cell and Commercial Lipases as a Biocatalyst. Biochem. Eng. J. 2008, 39(1), 185–189.
  • Santis-Navarro, A.; Gea, T.; Barrena, R.; Sánchez, A. Production of Lipases by Solid State Fermentation Using Vegetable Oil-Refining Wastes. Bioresource Technol. 2011, 102, 10080–10084.
  • Coradi, G.V.; da Visitação, V.L.; de Lima, E.A.; Saito, L.Y.T.; Palmieri, D.A.; Takita, M.A.; de Oliva Neto, P.; de Lima, V.M.G. Comparing Submerged and Solid-State Fermentation of Agro-Industrial Residues for the Production and Characterization of Lipase by Trichoderma harzianum. Ann. Microbiol. 2013, 63(2), 533–540.
  • Fadiloglu, S.; Erkmen, O. Effects of Carbon and Nitrogen Sources on Lipase Production by Candida rugosa. Turkish J. Eng. Environ. Sci. 2002, 26, 249–254.
  • Dalmau, E.; Montesinos, J.L.; Lotti, M.; Casas, C. Effect of Different Carbon Sources on Lipase Production by Candida rugosa. Enzyme Microbial Technol. 2000, 26, 657–663.
  • Sekhon, A.; Dahiya, N.; Tewari, R.P.; Hoondal, G.S. Production of Lipase by Bacillus megaterium AKG-1 Using Wheat Bran in Solid Substrate Fermentation. Indian J. Microbiol. 2004, 44, 219–220.
  • Mahanta, N.; Gupta, A.; Khare, S.K. Production of Protease and Lipase by Solvent Tolerant Pseudomonas aeruginosa PseA in Solid-State Fermentation Using Jatropha curcas Seed Cake as Substrate. Bioresource Technol. 2008, 99, 1729–1735.
  • Haltrich, D.; Steiner, W. Formation of Xylanase by Schizophyllum commune: Effect of Medium Components. Enzyme Microbial Technol. 1994, 16, 229–235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.