432
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Performance comparison of ethanol and butanol production in a continuous and closed-circulating fermentation system with membrane bioreactor

, , , , &

References

  • Katahira, S.; Mizuike, A.; Fukuda, H.; Kondo, A. Ethanol Fermentation from Lignocellulosic Hydrolysate by a Recombinant Xylose- and Cellooligosaccharide-assimilating Yeast Strain. Appl. Microbiol. Biotechnol. 2006, 72(6), 1136–1143.
  • Lin, Y.; Tanaka, S. Ethanol Fermentation from Biomass Resources: Current State and Prospects. Appl. Microbiol. Biotechnol. 2006, 69(6), 627–642.
  • Thirmal, C.; Dahman, Y. Comparisons of Existing Pretreatment, Saccharification, and Fermentation Processes for Butanol Production from Agricultural Residues. Can. J. Chem. Eng. 2012, 90(3), 745–761.
  • García, V.; Päkkilä, J.; Ojamo, H.; Muurinen, E.; Keiski, R.L. Challenges in Biobutanol Production: How to Improve the Efficiency? Renew. Sustain. Energy Rev. 2011, 15(2), 964–980.
  • Xu, Y.; Avedisian, C.T. Combustion of n-Butanol, Gasoline, and n-Butanol/Gasoline Mixture Droplets. Energy Fuels 2015, 29(5), 3467–3475.
  • Huang, Y.; Qin, X.; Luo, X.-M.; Nong, Q.; Yang, Q.; Zhang, Z.; Gao, Y.; Lv, F.; Chen, Y.; Yu, Z.; Liu, J.-L.; Feng, J.-X. Efficient Enzymatic Hydrolysis and Simultaneous Saccharification and Fermentation of Sugarcane Bagasse Pulp for Ethanol Production by Cellulase from Penicillium oxalicum EU2106 and Thermotolerant Saccharomyces cerevisiae ZM1–5. Biomass Bioenergy 2015, 77, 53–63.
  • Ghosh, D.; Dasgupta, D.; Agrawal, D.; Kaul, S.; Adhikari, D.K.; Kurmi, A.K.; Arya, P.K.; Bangwal, D.; Negi, M.S. Fuels and Chemicals from Lignocellulosic Biomass: An Integrated Biorefinery Approach. Energy Fuels 2015, 29(5), 3149–3157.
  • Turhan, O.; Isci, A.; Mert, B.; Sakiyan, O.; Donmez, S. Optimization of Ethanol Production from Microfluidized Wheat Straw by Response Surface Methodology. Prep. Biochem. Biotechnol. 2015, 45(8), 785–795.
  • Yang, M.; Kuittinen, S.; Zhang, J.; Vepsäläinen, J.; Keinänen, M.; Pappinen, A. Co-fermentation of Hemicellulose and Starch from Barley Straw and Grain for Efficient Pentoses Utilization in Acetone–Butanol–Ethanol Production. Bioresour. Technol. 2015, 179, 128–135.
  • Zhang, P.; Chen, C.; Shen, Y.; Ding, T.; Ma, D.; Hua, Z.; Sun, D. Starch Saccharification and Fermentation of Uncooked Sweet Potato Roots for Fuel Ethanol Production. Bioresour. Technol. 2013, 128, 835–838.
  • Pietrzak, W.; Kawa-Rygielska, J. Simultaneous Saccharification and Ethanol Fermentation of Waste Wheat–Rye Bread at Very High Solids Loading: Effect of Enzymatic Liquefaction Conditions. Fuel 2015, 147, 236–242.
  • Matías, J.; Encinar, J.M.; González, J.; González, J.F. Optimisation of Ethanol Fermentation of Jerusalem artichoke Tuber Juice using Simple Technology for a Decentralised and Sustainable Ethanol Production. Energy Sustain. Dev. 2015, 25, 34–39.
  • Ai, Y.; Medic, J.; Jiang, H.; Wang, D.; Jane, J.-L. Starch Characterization and Ethanol Production of Sorghum. J. Agric. Food Chem. 2011, 59(13), 7385–7392.
  • Camesasca, L.; Ramírez, M.B.; Guigou, M.; Ferrari, M.D.; Lareo, C. Evaluation of Dilute Acid and Alkaline Pretreatments, Enzymatic Hydrolysis and Fermentation of Napiergrass for Fuel Ethanol Production. Biomass Bioenergy 2015, 74, 193–201.
  • Cuevas, M.; Sánchez, S.; García, J.F.; Baeza, J.; Parra, C.; Freer, J. Enhanced Ethanol Production by Simultaneous Saccharification and Fermentation of Pretreated Olive Stones. Renew. Energy 2015, 74, 839–847.
  • Qureshi, N.; Saha, B.C.; Hector, R.E.; Hughes, S.R.; Cotta, M.A. Butanol Production from Wheat Straw by Simultaneous Saccharification and Fermentation using Clostridium beijerinckii: Part I—Batch Fermentation. Biomass Bioenergy 2008, 32(2), 168–175.
  • Li, S.-Y.; Srivastava, R.; Suib, S.L.; Li, Y.; Parnas, R.S. Performance of Batch, Fed-batch, and Continuous A–B–E Fermentation with pH-control. Bioresour. Technol. 2011, 102(5), 4241–4250.
  • Qureshi, N.; Saha, B.C.; Cotta, M.A. Butanol Production from Wheat Straw by Simultaneous Saccharification and Fermentation using Clostridium beijerinckii: Part II—Fed-batch Fermentation. Biomass Bioenergy 2008, 32(2), 176–183.
  • Yen, H.-W.; Li, R.-J.; Ma, T.-W. The Development Process for a Continuous Acetone–Butanol–Ethanol (ABE) Fermentation by Immobilized Clostridium acetobutylicum. J. Taiwan Inst. Chem. Eng. 2011, 42(6), 902–907.
  • Mutschlechner, O.; Swoboda, H.; Gapes, J. Continuous Two-stage ABE-fermentation using Clostridium beijerinckii NRRL B 592 Operating with a Growth Rate in the First Stage Vessel Close to its Maximal Value. J. Mol. Microbiol. Biotechnol. 2000, 2(1), 101–105.
  • Joannis-Cassan, C.; Riess, J.; Jolibert, F.; Taillandier, P. Optimization of Very High Gravity Fermentation Process for Ethanol Production from Industrial Sugar Beet Syrup. Biomass Bioenergy 2014, 70, 165–173.
  • Lin, Y.-H.; Liu, C.-G. Process Design for Very-high-gravity Ethanol Fermentation. Energy Procedia 2014, 61, 2725–2728.
  • Ezeji, T.C.; Qureshi, N.; Blaschek, H.P. Production of Acetone, Butanol and Ethanol by Clostridium beijerinckii BA101 and in situ Recovery by Gas Stripping. World J. Microbiol. Biotechnol. 2003, 19(6), 595–603.
  • Hemavathy, R.V.; Sankaran, K.; Vadanasundari, V.; Rangabhashiyam, S. In situ Separation of Ethanol with Aqueous Two-phase System and Assessment of KLa for Yeast Growth in Batch Cultivation. Prep. Biochem. Biotechnol. 2014, 44(6), 633–644.
  • Qureshi, N.; Hughes, S.; Maddox, I.S.; Cotta, M.A. Energy-efficient Recovery of Butanol from Model Solutions and Fermentation Broth by Adsorption. Bioprocess Biosyst. Eng. 2005, 27(4), 215–222.
  • Wang, H.; Li, C.; Li, C. RSM Optimization of the Operating Parameters for a Butanol Distillation Column. Asia Pac. J. Chem. Eng. 2012, 7(1), 117–123.
  • Huang, H.; Qureshi, N.; Chen, M.-H.; Liu, W.; Singh, V. Ethanol Production from Food Waste at High Solids Content with Vacuum Recovery Technology. J. Agric. Food Chem. 2015, 63(10), 2760–2766.
  • Liu, G.P.; Wei, W.; Wu, H.; Dong, X.L.; Jiang, M.; Jin, W.Q. Pervaporation Performance of PDMS/Ceramic Composite Membrane in Acetone Butanol Ethanol (ABE) Fermentation-PV Coupled Process. J. Membr. Sci. 2011, 373(1–2), 121–129.
  • Yen, H.-W.; Chen, Z.-H.; Yang, I.K. Use of the Composite Membrane of Poly(Ether-block-amide) and Carbon Nanotubes (CNTs) in a Pervaporation System Incorporated with Fermentation for Butanol Production by Clostridium acetobutylicum. Bioresour. Technol. 2012, 109, 105–109.
  • Chen, C.; Tang, X.; Xiao, Z.; Zhou, Y.; Jiang, Y.; Fu, S. Ethanol Fermentation Kinetics in a Continuous and Closed-circulating Fermentation System with a Pervaporation Membrane Bioreactor. Bioresour. Technol. 2012, 114, 707–710.
  • Chen, C.; Xiao, Z.; Tang, X.; Cui, H.; Zhang, J.; Li, W.; Ying, C. Acetone–Butanol–Ethanol Fermentation in a Continuous and Closed-circulating Fermentation System with PDMS Membrane Bioreactor. Bioresour. Technol. 2013, 128, 246–251.
  • Fan, S.; Xiao, Z.; Tang, X.; Chen, C.; Zhang, Y.; Deng, Q.; Yao, P.; Li, W. Inhibition Effect of Secondary Metabolites Accumulated in a Pervaporation Membrane Bioreactor on Ethanol Fermentation of Saccharomyces cerevisiae. Bioresour. Technol. 2014, 162, 8–13.
  • Lu, C.; Zhao, J.; Yang, S.-T.; Wei, D. Fed-batch Fermentation for n-butanol Production from Cassava Bagasse Hydrolysate in a Fibrous Bed Bioreactor with Continuous Gas Stripping. Bioresour. Technol. 2012, 104, 380–387.
  • Tang, X.; Wang, R.; Xiao, Z.; Shi, E.; Yang, J. Preparation and Pervaporation Performances of Fumed‐silica‐filled Polydimethylsiloxane–polyamide (PA) Composite Membranes. J. Appl. Polym. Sci. 2007, 105(5), 3132–3137.
  • Bergmeyer, H.U.; Grassel, M. Reagents for Enzymatic Analysis: Enzymes—Amylase; Verlag Chemie Press: Weinhiem, 1983; 151–152 pp.
  • Chen, C.; Tang, X.; Xiao, Z.; Zhou, Y.; Jiang, Y.; Fu, S. Adaptive Evolution of Saccharomyces cerevisiae in a Continuous and Closed Circulating Fermentation (CCCF) System Coupled with PDMS Membrane Pervaporation. Appl. Biochem. Biotechnol. 2013, 169(8), 2362–2373.
  • Liu, G.; Gan, L.; Liu, S.; Zhou, H.; Wei, W.; Jin, W. PDMS/Ceramic Composite Membrane for Pervaporation Separation of Acetone–Butanol–Ethanol (ABE) Aqueous Solutions and its Application in Intensification of ABE Fermentation Process. Chem. Eng. Process 2014, 86, 162–172.
  • Qureshi, N.; Saha, B.C.; Dien, B.; Hector, R.E.; Cotta, M.A. Production of Butanol (a biofuel) from Agricultural Residues: Part I—Use of Barley Straw Hydrolysate. Biomass Bioenergy 2010, 34(4), 559–565.
  • Qureshi, N.; Ezeji, T.C.; Ebener, J.; Dien, B.S.; Cotta, M.A.; Blaschek, H.P. Butanol Production by Clostridium beijerinckii. Part I: Use of Acid and Enzyme Hydrolyzed Corn Fiber. Bioresour. Technol. 2008, 99(13), 5915–5922.
  • Qureshi, N.; Saha, B.C.; Hector, R.E.; Dien, B.; Hughes, S.; Liu, S.; Iten, L.; Bowman, M.J.; Sarath, G.; Cotta, M.A. Production of Butanol (a biofuel) from Agricultural Residues: Part II—Use of Corn Stover and Switchgrass Hydrolysates. Biomass Bioenergy 2010, 34(4), 566–571.
  • Liew, S.T.; Arbakariya, A.; Rosfarizan, M.; Raha, A.R. Production of Solvent (acetone–butanol–ethanol) in Continuous Fermentation by Clostridium saccharobutylicum DSM 13864 using Gelatinised Sago Starch as a Carbon Source. Malays. J. Microbiol. 2006, 2(2), 42–50.
  • Ezeji, T.; Qureshi, N.; Blaschek, H.P. Production of Acetone–Butanol–Ethanol (ABE) in a Continuous Flow Bioreactor using Degermed Corn and Clostridium beijerinckii. Process Biochem. 2007, 42(1), 34–39.
  • Badr, H.R.; Toledo, R.; Hamdy, M.K. Continuous Acetone–Ethanol–Butanol Fermentation by Immobilized Cells of Clostridium acetobutylicum. Biomass Bioenergy 2001, 20(2), 119–132.
  • Huang, W.C.; Ramey, D.E.; Yang, S.T. Continuous Production of Butanol by Clostridium acetobutylicum Immobilized in a Fibrous Bed Bioreactor. Appl. Biochem. Biotechnol. 2004, 113, 887–898.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.