189
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Production of a protease inhibitor from edible mushroom Agaricus bisporus and its statistical optimization by response surface methodology

&

References

  • Sabotic, J.; Bleuler-Martinez, S.; Renko, M.; Caglic, P.A.; Kallert, S.; Strukelj, B.; Turk, D.; Aebi, M.; Kos, J.; Kunzler, M. Structural Basis of Trypsin Inhibition and Entomotoxicity of Cospin Serine Protease Inhibitor Involved in Defense of Coprinopsis Cinerea Fruiting Bodies. J. Biol. Chem. 2012, 287(6), 3898–3907.
  • Avanzo, P.; Sabotic, J.; Anzlovar, S.; Popovic, T.; Leonardi, A.; Pain, R.H.; Kos, R.J.; Brzin, J. Trypsin-Specific Inhibitors from the Basidiomycete Clitocybe Nebularis with Regulatory and Defensive Functions. J. Microbiology 2009, 155(pt 12), 3971–3981.
  • Renko, M.; Sabotic, J.; Mihelic, M.; Brzin, J.; Kos, J.; Turk D. Versatile Loops in Mycocypins Inhibit Three Protease Families. J. Biol. Chem. 2010, 285(1), 308–316.
  • Odani, S.; Tominaga, K.; Kondou, S.; Hori, H.; Koide, T.; Hara, S.; Isemura, M.; Tsunasawa, S. The Inhibitory Properties and Primary Structure of a Novel Serine Proteinase Inhibitor from the Fruiting Body of the Basidiomycete, Lentinus Edodes. Eur. J. Biochem. 1999, 262(3), 915–923.
  • Dohmae, N.; Takio, K.; Tsumuraya, Y.; Hashimoto, Y. The Complete Amino Acid Sequences of Two Serine Proteinase Inhibitors from the Fruiting Bodies of a Basidiomycete, Pleurotus ostreatus. Arch. Biochem. Biophys. 1995, 316(1), 498–506.
  • Ali, P.P.M.; Sapna, K.; Rekha, M.K.R.; Bhat, S.G.; Chandrasekaran, M.; Elyas, K. Trypsin Inhibitor from Edible Mushroom Pleurotus Floridanus Active Against Proteases of Microbial Origin. Appl. Biochem. Biotechnol. 2014, 173(1), 167–178.
  • Haq, S.K.; Rabbani, G.; Ahmad, E.; Atif, S.M.; Khan, R.H. Protease Inhibitors: A Panacea? J. Biochem. Mol. Toxicol. 2010, 24(4), 270–277.
  • Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent Advances in Solid-State Fermentation. Biochem. Eng. J. 2009, 44, 13–18.
  • Xiao, Y.; Wu, D.; Zhao, S.; Lin, W.; Gao, X. Statistical Optimization of Alkaline Protease Production from Penicillium Citrinum YL-1 Under Solid-State Fermentation Statistical Optimization of Alkaline Protease Production from Penicillium Citrinum YL-1 Under Solid-State Fermentation. Prep. Biochem. Biotech. 2015, 45(5), 447–462.
  • Srinivas, M.R.S.; Chand, N.; Lonsane, B.K. Use of Plackett-Burman Design for Rapid Screening of Several Nitrogen Sources, Growth Product Promoters, Minerals and Enzyme Inducers for the Production of Alphagalactosidase by Aspergillus Niger Solid State Fermentation System. Bioprocess Eng. 1994, 10(3), 139–144.
  • Li, J.; Ma, C.; Ma, Y.; Li, Y.; Zhou, W.; Xu, P. Medium Optimization by Combination of Response Surface Methodology and Desirability Function: An Application in Glutamine Production. Appl. Microbiol. Biotechnol. 2007, 74(3), 563–571.
  • Francis, F.; Sabu, A.; Nampoothiri, K.M. Use of Response Surface Methodology for Optimizing Process Parameters for the Production of Amylase by Aspergillus Oryzae. Biochem. Eng. J. 2003, 15(2), 107–115.
  • Kunitz, M. Crystalline soybean trypsin inhibitor II. General properties. J. Gen. Physiol. 1947, 30(4), 291–310.
  • Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J Biol. Chem. 1951, 193(1), 1265–1275.
  • Plackett, R.L.; Burman, J.P. The Design of the Optimum Multifactorial Experiment. Biometrika 1946, 33(4), 305–325.
  • Ghanem, N.B.; Yusef, H.H.; Mahrouse, H.K. Production of Aspergillus Terreus Xylanase in Solid-State Cultures: Application of the Plackett-Burman Experimental Design to Evaluate Nutritional Requirement. Bioresource Technol. 2000, 73(2), 113–121.
  • Wingfield, P. Protein Precipitation Using Ammonium Sulphate. In Current Protocols in Protein Science; Wiley, New York, 2001; 13: 3F: A.3F.1–A.3F.8 pp.
  • Franco, O.L.; Dias, S.C.; Magalhaes, C.P.; Monteiro, A.C.S.; Bloch, C. Jr; Melob, F.R.; Oliveira-Neto, O.B.; Monnerat, R.G.; Grossi-de-Sa, M.F. Effects of Soybean Kunitz Trypsin Inhibitor on the Cotton Boll Weevil (Anthonomus Grandis). Phytochemistry 2004, 65(1), 81–89.
  • Vishwanatha, K.S.; Appu, R.A.G.; Singh, S.A. Acid Protease Production by Solid-State Fermentation Using Aspergillus Oryzae MTCC 5341: Optimization of Process Parameters. J. Ind. Microbiol. Biotechnol. 2010, 37(2), 129–138.
  • Mishra, A.; Kumar, S. Cyanobacterial Biomass as N-Supplement to Agro-Waste for Hyper-Production of Laccase from Pleurotus Ostreatus in Solid State Fermentation. Proc. Biochem. 2007, 42(4), 681–685.
  • Shahriarinour, M.; Wahab, M.N.A.; Mohammad, R.; Mustafa, S.; Ariff, A.B. Cyanobacterial Biomass as N-Supplement to Oil Palm Empty Fruit Bunch (OPEFB) Fibre for Improvement of Cellulose Production by Aspergillus Terrus in Submerged Fermentation. BioResources 2011, 6(2), 1696–1706.
  • Hesseltine, C.W. Biotechnology Report: Solid-State Fermentations. Biotechnol. Bioeng. 1972, 14(4), 517–532.
  • Ting, X.J.; He, G.Q.; Chen, Q.H.; Zhang, X.Y. Medium Optimization for the Production of Thermal Stable Glucanase by Bacillus subtilis ZJF- 1A5 Using Response Surface Methodology. Bioresour. Technol. 2004, 93(2), 175–181.
  • Adinarayana, K.; Ellaiah, P. Response Surface Optimization of the Critical Medium Components for the Production of Alkaline Protease by a Newly Isolated Bacillus sp. J. Pharm. Pharm. Sci. 2002, 5(3), 272–278.
  • Pandey, A.; Selvakumar, P.; Soccol C.R.; Nigam P. Solid-State Fermentation for the Production of Industrial Enzymes. Curr. Sci. 1999, 77, 149–162.
  • Sindhu, R.; Suprabha, G.N.; Shashidhar S. Optimization of Process Parameters for the Production of Alkaline Protease from Penicillium Godlewskii SBSS25 and its Application in Detergent Industry. Afr. J. Microbiol. Res. 2009, 3(9), 515–522.
  • Tunga, R.; Banerjee, R.; Bhattacharyya, B.C. Optimization of n Variable Biological Experiments by Evolutionary Operation-Factorial Design Technique. J. Biosci. Bioeng. 1999, 87(2), 224–230.
  • Agrawal, D.; Patidar, P.; Banerjee, T.; Patil, S. Alkaline Protease Production by a Soil Isolate of Beauveria Felina Under SSF Conditions: Parameters Optimization and Application to Soy Protein Hydrolysis. Process Biochem. 2005, 40(3–4), 1131–1136.
  • Gusek, T.W.; Wilson, D.B.; Kinselle, J.E. Influences of Carbon Source on Production of Heat Stable Protease From Thermomonospora Fusca. Appl. Microbiol. Biotechnol. 1988, 28(1), 80–84.
  • Rao, M.B.; Tanksale, A.M.; Ghatke, M.S.; Deshpande, V.V. Molecular Biology and Biotechnological Aspects of Microbial Proteases. Microbiol. Mol. Biol. Rev. 1998, 62(3), 597–635.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.