100
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Al3+ on the titer of spiramycin and effective components in fermentor

, , , &

References

  • Omura, S.; Kitao, C.; Hamada, H.; Ikeda, H. Bioconversion and Biosynthesis of 16-Membered Macrolide Antibiotics (X.1). Final Steps in the Biosynthesis of Spiramycin, using Enzyme Inhibitor: Cerulenin. J. Chem. Pharma. Bull. 1979, 27(1), 176–182.
  • Omura, S.; Tanaka, Y. Biochemistryregulation and Genetics of Macrolide Production. Macrolide Antibiotics: Chemistry, Biology, and Practice. Academic Press: New York, 1984, pp. 199–229.
  • Shi, X.; Zhang, S.; Fawcett, J.P.; Zhong, D. Acid Catalysed Degradation of Some Spiramycin Derivatives Found in the Antibiotic Bitespiramycin. J. Pharm. Biomed. Anal. 2004, 36(3), 593–600.
  • Omura, S.; Takeshima, H.; Nakagawa, A.; Miyazawa, J.; Piriou, F.; Lukacs, G. Studies on the Biosynthesis of 16-membered Macrolide Antibiotics using Carbon-13 Nuclear Magnetic Resonance Spectroscopy. Biochemistry 1977, 16(13), 2860–2866.
  • Omura, S.; Ikeda, H.; Kitao, C. Isolation and Properties of Spiramycin I 3–Hydroxyl Acylase from Streptomyces ambofaciens. J. Biochem. 1979, 86(6), 1753–1758.
  • Lounès, A.; Lebrihi, A.; Benslimane, C.; Lefebvre, G.; Germain, P. Glycerol Effect on Spiramycin Production and Valine Catabolism in Streptomyces ambofaciens. Curr. Microbiol. 1995, 31(5), 304–311.
  • Khaoua, S.; Lebrihi, A.; Laakel, M.; Schneider, F.; Germain, P.; Lefebvre, G. Influence of Short-chain Fatty Acids on the Production of Spiramycin by Streptomyces ambofaciens. Appl. Microbiol. Biotechnol. 1992, 36(6), 763–767.
  • Lounès, A.; Lebrihi, A.; Benslimane, C.; Lefebvre, G.; Germain, P. Effect of Nitrogen/Carbon Ratio on the Specific Production Rate of Spiramycin by Streptomyces ambofaciens. Process Biochem. 1996, 31(1), 13–20.
  • Colombie, V.; Bideaux, C.; Goma, G.; Uribelarrea, J.L. Effects of Glucose Limitation on Biomass and Spiramycin Production by Streptomyces ambofaciens. Bioprocess Biosyst. Eng. 2005, 28(1), 55–61.
  • Lebrihi, A.; Lamsaif, D.; Lefebvre, G.; Germain, P. Effect of Ammonium Ions on Spiramycin Biosynthesis in Streptomyces ambofaciens. Appl. Microbiol. Biotechnol. 1992, 37(3), 382–387.
  • Lounes, A.; Lebrihi, A.; Benslimane, C.; Lefebvre, G.; Germain, P. Regulation of Valine Catabolism by Ammonium in Streptomyces ambofaciens, Producer of Spiramycin. Can. J. Microbiol. 1995, 41(9), 800–808.
  • Laakel, M.; Lebrihi, A.; Khaoua, S.; Schneider, F.; Lefebvre, G.; Germain, P. A Link Between Primary and Secondary Metabolism: Malonyl-CoA Formation in Streptomyces ambofaciens Growing on Ammonium Ions or Valine. Microbiology 1994, 140(6), 1451–1456.
  • Untrau, S.; Lebrihi, A.; Lefebvre, G.; Germain, P. Nitrogen Catabolite Regulation of Spiramycin Production in Streptomyces ambofaciens. Curr. Microbiol. 1994, 28(2), 111–118.
  • Untrau, S.; Lebrihi, A.; Germain, P.; Lefebvre, G. Lysine Catabolism in Streptomyces ambofaciens. Producer of Macrolide Antibiotic, Spiramycin. Curr. Microbiol. 1992, 25(6), 313–318.
  • Laakel, M.; Lebrihi, A.; Khaoua, S.; Schneider, F.; Lefebvre, G.; Germain, P. Relationship Between Valine, Fatty Acids, and Spiramycin Biosynthesis in Streptomyces ambofaciens. Can. J. Microbiol. 1994, 40(8), 672–676.
  • Lounes, A.; Lebrihi, A.; Benslimane, C.; Lefebvre, G.; Germain, P. Regulation of Spiramycin Synthesis in Streptomyces ambofaciens: Effects of Glucose and Inorganic Phosphate. Appl. Microbiol. Biotechnol. 1996, 45(1–2), 204–211.
  • Zeng, J.; Ye, R.F.; Zheng, Y.T.; Mao, Q.G.; Lv, H.P.; Shi, T.T. Strain Screening and Sodium Lactate Effect on Spiramycin Production in Streptomyces spiramyceticus. Res. Chem. Intermed. 2016, 42(12), 1627–1638.
  • Li, Z.L.; Wang, Y.H.; Chu, J.; Zhuang, Y.P.; Zhang, S.L. Leucine Improves the Component of Isovaleryl Spiramycins for the Production of Bitespiramycin. Bioprocess Biosyst. Eng. 2009, 32(5), 641–647.
  • Untrau-Taghian, S.; Lebrihi, A.; Germain, P.; Lefebvre, G. Influence of Growth Rate and Precursor Availability on Spiramycin Production in Streptomyces ambofaciens. Can. J. Microbiol. 1995, 41(2), 157–162.
  • Richardson, M.A.; Kuhstoss, S.; Huber, M.L.; Ford, L.; Godfrey, O.; Turner, J.R.; Rao, R.N. Cloning of Spiramycin Biosynthetic Genes and Their Use in Constructing Streptomyces ambofaciens Mutants Defective in Spiramycin Biosynthesis. J. Bacteriol. 1990, 172(7), 3790–3798.
  • Nguyen, H.C.; Karray, F.; Lautru, S.; Gagnat, J.; Lebrihi, A.; Huynh, T.D.H.; Pernodet, J.L. Glycosylation Steps During Spiramycin Biosynthesis in Streptomyces ambofaciens: Involvement of Three Glycosyltransferases and Their Interplay with Two Auxiliary Proteins. Antimicrob. Agents Chemother. 2010, 54(7), 2830–2839.
  • Karray, F.; Darbon, E.; Nguyen, H.C.; Gagnat, J.; Pernodet, J.L. Regulation of the Biosynthesis of the Macrolide Antibiotic Spiramycin in Streptomyces ambofaciens. J. Bacteriol. 2010, 192(21), 5813–5821.
  • Hong, C.J.; Di, X.L. Antibiotic Industrial Analysis. China Medical Science Press: Beijing, 1991, p. 126.
  • Nguyen, H.C.; Darbon, E.; Thai, R.; Pernodet, J.L.; Lautru, S. Post-PKS Tailoring Steps of the Spiramycin Macrolactone Ring in Streptomyces ambofaciens. Antimicrob. Agents Chemother. 2013, 57(8), 3836–3842.
  • Yuan, K.; Yonghong, W.; Mingzhi, H.; Yingping, Z.; Qiwei, F.; Ju, C.; Siliang, Z. The Effect of Mn2+ on the Metabolism of Spiramycin Producing Bacteria and Spiramycin Synthesis. Acta Microbiol. Sin. Chin. 2005, 45, 1.
  • Mao, X.; Chen, S.; Shen, Y.; Wei, D.; Deng, Z. Effect of Copper Sulfate on Biosynthesis of FR-008/Candicidin Complex Production in Streptomyces sp. World J. Microbiol. Biotechnol. 2011, 27(9), 2033–2039.
  • Ashy, M.A.; El-Galil, A.; Khalil, M.; Abou-Zeid, A.Z.A. Role of Amino Acids and Micronutrients on Biosynthesis of Spiramycins. J. Chem. Technol. Biotechnol. 1981, 31(1), 189–193.
  • Chen, C.H.; Gong, H.; Gao, S.H. The Experiment for Fermentation Engineering. Higher Education Press: Beijing, China, 2009, pp. 184–193.
  • Khaoua, S.; Lebrihi, A.; Laakel, M.; Schneider, F.; Germain, P.;Lefebvre, G. Influence of Short-chain Fatty Acids on the Production of Spiramycin by Streptomyces ambofaciens[J]. Applied Microbiology and Biotechnology 1992, 36, 763–767.
  • Omura, S.; Ikeda, H.; Kitao, C. Isolation and Properties of Spiramycin I 3-Hydroxyl Acylase from Streptomyces ambofaciens[J]. Biochemical Journal 1979, 86, 1753–1758.
  • Chen, Y.; Huang, M.; Wang, Z.; Chu, J.; Zhuang, Y.; Zhang, S. Controlling the Feed Rate of Glucose and Propanol for the Enhancement of Erythromycin Production and Exploration of Propanol Metabolism Fate by Quantitative Metabolic Flux Analysis. Bioprocess Biosyst. Eng. 2013, 36(10), 1445–1453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.