180
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Expression and purification of the extracellular domains of human glycoprotein VI (GPVI) and the receptor for advanced glycation end products (RAGE) from Rattus norvegicus in Leishmania tarentolae

, ORCID Icon, , , &

References

  • Gupta, S.K.; Shukla, P. Advanced Technologies for Improved Expression of Recombinant Proteins in Bacteria: Perspectives and Applications. Crit. Rev. Biotechnol. 2016, 36, 1089–1098.
  • Meehl, M.A.; Stadheim, T.A. Biopharmaceutical Discovery and Production in Yeast. Curr. Opin. Biotechnol. 2014, 30, 120–127.
  • Wells, E.A.; Robinson, A.S. Cellular Engineering for Therapeutic Protein Production: Product Quality, Host Modification, and Process Improvement. Biotechnol. J. 2017, 12, 1600105. doi:10.1002/biot201600105
  • Vega, M.C. (Ed.). Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, 2016; 896, Springer International Publishing AG, Switzerland.
  • Breitling, R.; Klingner, S.; Callewaert, N.; Pietrucha, R.; Geyer, A.; Ehrlich, G.; Hartung, R.; Müller, A.; Contreras, R.; Beverley, S.M.; Alexandrov, K. Non-pathogenic Trypanosomatid Protozoa as a Platform for Protein Research and Production. Protein Expr. Purif. 2002, 25, 209–218.
  • Basile, G.; Peticca, M. Recombinant Protein Expression in Leishmania tarentolae. Mol. Biotechnol. 2009, 43, 273–278.
  • Taheri, T.; Seyed, N.; Mizbani, A.; Rafati, S. Leishmania Based Expression Systems. Appl. Microbiol. Biotechnol. 2016, 100, 7377–7385.
  • Fritsche, C.; Sitz, M.; Wolf, M.; Pohl, H.-D. Development of a Defined Medium for Heterologous Expression in Leishmania tarentolae. J. Basic Microbiol. 2008, 48, 488–495.
  • Neeper, M.; Schmidt, A.M.; Brett, J.; Yan, S.D.; Wang, F.; Pan, Y.C.; Elliston, K.; Stern, D.; Shwa, A. Cloning and Expression of a Cell Surface Receptor for Advanced Glycosylation End Products of Proteins. J. Biol. Chem. 1992, 267, 14998–15004.
  • Bierhaus, A.; Humpert, P.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.; Nawroth, P. Understanding RAGE, the Receptor for Advanced Glycation End Products. J. Mol. Med. 2005, 83, 876–886.
  • Barclay, A.N. Membrane Proteins with Immunoglobulin-like Domains - A Master Superfamily of Interaction Molecules. Semin. Immunol. 2003, 15, 215–223.
  • Dattilo, B.M.; Fritz, G.; Leclerc, E.; Vander Kooi, C.; Heizmann, C.W.; Chazin, W.J. The Extracellular Region of the Receptor for Advanced Glycation Endproducts is Composed of Two Independent Structural Units. Biochemistry 2007, 46, 6957–6970.
  • Hudson, B.I.; Kalea, A.Z.; Arriero, M.M.; Harja, E.; Boulanger, E.; DÁgati, V.; Schmidt, V.M. Interaction of the RAGE Cytoplasmic Domain with Diaphanous-I is Required for Ligand-stimulated Cellular Migration Through Activation of Rac1 and Cdc42. J. Biol. Chem. 2008, 283, 34457–34468.
  • Schmidt, A.M.; Vianna, M.; Gerlach, M.; Brett, J.; Ryan, J.; Kao, J.; Esposito, C.; Hegarty, C.; Hurley, W.; Clauss, M. Isolation and Characterization of Two Binding Proteins for Advanced Glycosylation End Products from Bovine Lung which are Present on the Endothelial Cell Surface. J. Biol. Chem. 1992, 267, 14987–14997.
  • Thorpe, S.R.; Baynes, J.W. Maillard Reaction Products in Tissue Proteins: New Products and New Perspectives. Amino Acids 2003, 25, 275–281.
  • Sparvero, L.J.; Asafu-Adjei, D.; Kang, R.; Tang, D.; Amin, N.; Im, J.; Rutledge, R.; Lin, B.; Amoscato, A.A.; Zeh, H.J.; Lotze, M.T. RAGE (Receptor for Advanced Glycation Endproducts), RAGE Ligands, and Their Role in Cancer and Inflammation. J. Transl. Med. 2009, 7, 17.
  • Leclerc, E.; Fritz, G.; Vetter, S.W.; Heizmann, C.W. Binding of S100 Proteins to RAGE: An Update. Biochim. Biophys. Acta 2009, 1793, 993–1007.
  • Tian, J.; Avalos, A.M.; Mao, S.-Y.; Chen, B.; Senthil, K.; Wu, H.; Parroche, P.; Drabic, S.; Golenbock, D.; Sirois, C.; Hua, J.; An, L.L.; Audoly, L.; Rosa, G.A.; Bierhaus, A.; Naworth, P.; Marshak-Rothstein, A.; Crow, M.K.; Fitzgerald, K.A.; Latz, E.; Kiener, P.A.; Coyle, A.J. Toll-like Receptor 9-dependent Activation by DNA-Containing Immune Complexes is Mediated by HMGB1 an RAGE. Nat. Immunol. 2007, 8, 487–496.
  • Mizumoto, S.; Takahashi, J.; Sugahara, K. Receptor for Advanced Glycation End Products (RAGE) Functions as Receptor for Specific Sulfated Glycosaminoglycans, and Anti-RAGE Antibody or Sulfated Glycosaminoglycans Delivered In Vivo Inhibit Pulmonary Metastasis of Tumor Cells. J. Biol. Chem. 2012, 287, 18985–18994.
  • Rai, V.; Toure, F.; Chitayat, S.; Pei, R.; Song, F.; Li, Q.; Zhang, J.; Rosario, R.; Ramasamy, R.; Chazin, W.J.; Schmidt, A.M. Lysophosphatidic Acid Targets Vascular and Oncogenic Pathways Via RAGE Signaling. J. Exp. Med. 2012, 209, 2339–2350.
  • Xie, J.; Reverdatto, S.; Frolov, A.; Hoffmann, R.; Burz, D.S.; Shekhtman, A. Structural Basis for Pattern Recognition by the Receptor for Advanced Glycation End Products (RAGE). J. Biol. Chem. 2008, 283, 27255–27769.
  • Huttunen, H.J.; Fages, C.; Rauvala, H. Receptor for Advanced Glycation End Products (RAGE)-Mediated Neurite Outgrowth and Activation of NF-κB Require the Cytoplasmic Domain of the Receptor But Different Downstream Signalling Pathways. J. Biol. Chem. 1999, 274, 19919–19924.
  • Riehl, A.; Nemeth, J.; Angel, P.; Hess, J. The Receptor RAGE: Bridging Inflammation and Cancer. Cell Commun. Signal. 2009, 7, 12. doi:10.1186/1478-811X-7-12
  • Chuah, Y.K.; Basir, R.; Talib, H.; Tie, T.H.; Nordin, N. Receptor for Advanced Glycation End Products and Its Involvement in Inflammatory Diseases. Int. J. Inflamm. 2013, 2013, 1–15. (Article ID 403460).
  • Ramasamy, R.; Shekhtman, A.; Schmidt, A.M. The Multiple Faces of RAGE - Opportunities for Therapeutic Intervention in Aging and Chronic Diseases. Expert Opin. Ther. Target. 2016, 20, 431–446.
  • Phillips, D.R.; Agin, P.P. Platelet Plasma Membrane Glycoproteins Identification of a Proteolytic Substrate for Thrombin. Biochem. Biophys. Res. Commun. 1977, 75, 940–947.
  • Moroi, M.; Jung, S.M.; Okuma, M.; Shinmyozu, K. A Patient with Platelets Deficient in Glycoprotein VI that Lack Both Collagen-induced Aggregation and Adhesion. J. Clin. Invest. 1989, 84, 1440–1445.
  • Knight, C.G.; Morton, L.F.; Onley, D.J.; Peachey, A.R.; Ichinohe, T.; Okuma, M.; Farndale, R.W.; Barnes, M.J. Collagen-platelet Interaction: Gly-Pro-Hyp is Uniquely Specific for Platelet Gp VI and Mediates Platelet Activation by Collagen. Cardiovasc. Res. 1999, 41, 450–457.
  • Clemetson, J.M.; Polgar, J.; Magnenat, E.; Wells, T.N.; Clemetson, K.J. The Platelet Collagen Receptor Glycoprotein VI is a Member of the Immunoglobulin Superfamily Closely Related to Fcα R and the Natural Killer Receptors. J. Biol. Chem. 1999, 274, 29019–29024.
  • Moroi, M.; Jung, S.M. Platelet Glycoprotein VI: Its Structure and Function. Thrombosis Res. 2004, 114, 22–233.
  • Dütting, S.; Bender, M.; Nieswandt, B. Platelet GPVI: A Target for Antithrombotic Therapy ?! Trends Pharmacol. Sci. 2012, 33, 583–590.
  • Yun, S.H.; Sim, E.H.; Goh, R.Y.; Park, J.I.; Han, J.Y. Platelet Activation: The Mechanism and Potential Biomarkers. BioMed Res. Int. 2016, 2016, 1–5. (Article ID 9060143).
  • Minton, A.P. Recent Applications of Light Scattering Measurements in the Biological and Biopharmaceutical Sciences. Anal. Biochem. 2016, 501, 4–22.
  • Srikrishna, G.; Huttunen, H.J.; Johansson, L.; Weigle, B.; Yamaguchi, Y.; Rauvala, H.; Freeze, H.H. N-Glycans on the Receptor for Advanced Glycation End Products Influence Amphoterin Binding and Neurite Outgrowth. J. Neurobiol. 2002, 80, 998–1008.
  • Lecut, C.; Arocast, V.; Ulrichts, H.; Elbaz, A.; Villevall, J.L.; Lacapere, J.J.; Deckmyn, H.; Jandrot-Perrust, M. Identification of Residues Within Human Glycoprotein VI Involved in the Binding to Collagen. J. Biol. Chem. 2004, 279, 52293–52299.
  • Fritsche, C.; Sitz, M.; Weiland, N.; Breitling, R.; Pohl, H.D. Characterization of the Growth Behavior of Leishmania tarentolae - A New Expression System for Recombinant Proteins. J. Basic Microbiol. 2007, 47, 384–393.
  • Klatt, S.; Rohe, M.; Alagesan, K.; Kolarich, D.; Konthur, Z.; Hartl, D. Production of Glycosylated Soluble Amyloid Precursor Protein Alpha (sAPPalpha) in Leishmania tarentolae. J. Proteome Res. 2013, 12, 396–403.
  • Phan, H.P.; Sugino, M.; Niimi, T. The Production of Recombinant Human Laminin-322 in a Leishmania tarentolae Expression System. Prot. Expr. Purif. 2009, 68, 79–84.
  • Pion, C.; Courtois, V.; Husson, S.; Bernard, M.C.; Nicolai, M.C.; Talaga, P.; Trannoy, E.; Moste, C.; Sodoyer, R.; Legastelois, I. Characterization and Immunogenicity in Mice of Recombinant Influenza Haemagglutinins Produced in Leishmania tarentolae. Vaccine 2014, 32, 5570–5576.
  • Grzyb, K.; Czarnota, A.; Brzozowska, A.; Cieslik, A.; Rabalski, L.; Tyborowska, J.; Bienkowska-Szewczyk, K. Immunogenicity and Functional Characterization of Leishmania-derived Hepatitis C Virus Envelope Glycoprotein Complex. Sci. Reports 2016, 6, 30626 doi:10.1038/srep30627

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.