450
Views
25
CrossRef citations to date
0
Altmetric
Articles

Consolidated bioprocessing for cellulosic ethanol conversion by cellulase–xylanase cell-surfaced yeast consortium

, , , , &
Pages 653-661 | Received 07 Mar 2018, Accepted 02 Jun 2018, Published online: 11 Jul 2018

References

  • Lynd, L.; Zyl, W.; Mcbride, J.; Laser, M. Consolidated Bioprocessing of Cellulosic Biomass: An Update. Curr. Opin. Biotechnol. 2005, 16, 577–583.
  • Zafra, G.; Cortés-Espinosa, D.V. Biodegradation of Polycyclic Aromatic Hydrocarbons by Trichoderma Species: A Mini Review. Environ. Sci. Pollut. Res. 2015, 22, 19426–19433.
  • Druzhinina, I.S.; Kubicek, C.P. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. Adv. Appl. Microbiol. 2016, 95, 69–147.
  • Juhasz, T.; Szengyel, Z.; Reczey, K.; Siika-Aho, M.; Viikari, L. Characterization of Cellulases and Hemicellulases Produced by Trichoderma Reesei on Various Carbon Sources. Process Biochem. 2005, 40, 3519–3525.
  • Sakamoto, T.; Hasunuma, T.; Hori, Y.; Yamada, R.; Kondo, A. Direct Ethanol Production from Hemicellulosic Materials of Rice Straw by Use of an Engineered Yeast Strain Codisplaying Three Types of Hemicellulolytic Enzymes on the Surface of Xylose-Utilizing Saccharomyces cerevisiae Cells. J. Biotechnol. 2012, 158, 203–210.
  • Mert, M.J.; la Grange, D.C.; Rose, S.H.; van Zyl, W.H. Engineering of Saccharomyces cerevisiae to Utilize Xylan as a Sole Carbohydrate Source by Co-Expression of an Endoxylanase, Xylosidase and a Bacterial Xylose Isomerase. J. Indus. Microbiol. Biotechnol. 2016, 43, 431–440.
  • Prior, B.A.; Day, D.F. Hydrolysis of Ammonia-Pretreated Sugar Cane Bagasse with Cellulase, Beta-Glucosidase, and Hemicellulase Preparations. Appl. Biochem. Biotechnol. 2008, 146, 151–164.
  • Ren, H.; Richard, T.L.; Moore, K.J. The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage. Appl. Biochem. Biotechnol. 2007, 137–140, 221–238.
  • Moraïs, S.; Barak, Y.; Caspi, J.; Hadar, Y.; Lamed, R.; Shoham, Y.; Wilson, D.B.; Bayer, E.A. Cellulase-Xylanase Synergy in Designer Cellulosomes for Enhanced Degradation of a Complex Cellulosic Substrate. MBio. 2010, 1, e00285-10–e00210.
  • Bae, J.; Kuroda, K.; Ueda, M. Proximity Effect among Cellulose-Degrading Enzymes Displayed on the Saccharomyces cerevisiae Cell Surface. Appl. Environ. Microbiol. 2015, 81, 59–66.
  • Song, H.T.; Gao, Y.; Yang, Y.M.; Xiao, W.J.; Liu, S.H.; Xia, W.C.; Liu, Z.L.; Yi, L.; Jiang, Z.B. Synergistic Effect of Cellulase and Xylanase during Hydrolysis of Natural Lignocellulosic Substrates. Bioresour. Technol. 2016, 219, 710–715.
  • Gonçalves, G.A.; Takasugi, Y.; Jia, L.; Mori, Y.; Noda, S.; Tanaka, T.; Ichinose, H.; Kamiya, N. Synergistic Effect and Application of Xylanases as Accessory Enzymes to Enhance the Hydrolysis of Pretreated Bagasse. Enzyme Microb. Technol. 2015, 72, 16–24.
  • Zhang, J.; Viikari, L. Impact of Xylan on Synergistic Effects of Xylanases and Cellulases in Enzymatic Hydrolysis of Lignocelluloses. Appl. Biochem. Biotechnol. 2014, 174, 1393–1402.
  • Hu, J.; Arantes, V.; Saddler, J.N. The Enhancement of Enzymatic Hydrolysis of Lignocellulosic Substrates by the Addition of Accessory Enzymes Such as Xylanase: Is It an Additive or Synergistic Effect? Biotechnol. Biofuels 2011, 4, 36.
  • Liu, Z.; Ho, S.H.; Hasunuma, T.; Chang, J.S.; Ren, N.Q.; Kondo, A. Recent Advances in Yeast Cell-Surface Display Technologies for Waste Biorefineries. Bioresour. Technol. 2016, 215, 324–333.
  • Tian, S.; Luo, X.L.; Yang, X.S.; Zhu, J.Y. Robust Cellulosic Ethanol Production from SPORL-Pretreated Lodgepole Pine Using an Adapted Strain Saccharomyces cerevisiae without Detoxification. Bioresour. Technol. 2010, 101, 8678–8685.
  • Lambertz, C.; Garvey, M.; Klinger, J.; Heesel, D.; Klose, H.; Fischer, R.; Commandeur, U. Challenges and Advances in the Heterologous Expression of Cellulolytic Enzymes: A Review. Biotechnol. Biofuels. 2014, 7, 135.
  • Amoah, J.; Ishizue, N.; Ishizaki, M.; Yasuda, M.; Takahashi, K.; Ninomiya, K.; Yamada, R.; Kondo, A.; Ogino, C. Development and Evaluation of Consolidated Bioprocessing Yeast for Ethanol Production from Ionic Liquid-Pretreated Bagasse. Bioresour. Technol. 2017, 245, 1413–1420.
  • Apiwatanapiwat, W.; Murata, Y.; Kosugi, A.; Yamada, R.; Kondo, A.; Arai, T.; Rugthaworn, P.; Mori, Y. Direct Ethanol Production from Cassava Pulp Using a Surface-Engineered Yeast Strain Co-Displaying Two Amylases, Two Cellulases, and β-Glucosidase. Appl. Microbiol. Biotechnol. 2011, 90, 377–384.
  • Jin, Y.; Wang, Z.; Mo, C.L.; Yang, X.S; Tian, S. Construction of Recombinant Saccharomyces cerevisiae Strains through Expressing the Key Genes in the Xylose Metabolism under the Control of Different Promoters for Co-Fermentation Glucose and Xylose. Biotechnol. Bull. 2014, 0, 153–160.
  • Fan, L.H.; Zhang, Z.J.; Yu, X.Y.; Xue, Y.X.; Tan, T.W. Self-Surface Assembly of Cellulosomes with Two Miniscaffoldins on Saccharomyces cerevisiae for Cellulosic Ethanol Production. Proc. Natl. Acad. Sci. USA. 2012, 109, 13260–13265.
  • Tsai, S.L.; Goyal, G.; Chen, W. Surface Display of a Functional Minicellulosome by Intracellular. Appl. Environ. Microbiol. 2010, 76, 7514–7520.
  • Wood, T.M.; Bhat, K.M. Methods for Measuring Cellulase Activities. Methods Enzymol. 1988, 160, 87–112.
  • Mo, C.L.; Chen, N.; Lv, T.; Du, J.L.; Tian, S. Direct Ethanol Production from Steam-Exploded Corn Stover Using a Synthetic Diploid Cellulase-Displaying Yeast Consortium. Bioresources. 2015, 10, 4460–4472.
  • Fujita, Y.; Ito, J.; Ueda, M.; Fukuda, H.; Kondo, A. Synergistic Saccharification, and Direct Fermentation to Ethanol, of Amorphous Cellulose by Use of an Engineered Yeast Strain Codisplaying Three Types of Cellulolytic Enzyme. Appl. Environ. Microbiol. 2004, 70, 1207–1212.
  • Liu, Z.; Inokuma, K.; Ho, S.H.; Haan, R.D.; Hasunuma, T.; van Zyl, W.H.; Kondo, A. Combined Cell-Surface Displayand Secretion-Based Strategies for Production of Cellulosic Ethanol with Saccharomyces cerevisiae. Biotechnol. Biofuels. 2015, 8, 162.
  • Ostergaard, S.; Olsson, L.; Nielsen, J. Metabolic Engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2000, 64, 34–50.
  • Tang, X.S.; Zhang, X.W. Saccharomyces cerevisiae Expression System. Life Sci. Res. 2004, 8, 106–109.
  • Bill, R.M. Recombinant Protein Production in Yeast: Methods and Protocols. Humana Press: New Jersey, USA, 2005; p 245–259.
  • Xu, L.; Shen, Y.; Hou, J.; Peng, B.; Tang, H.; Bao, X. Secretory Pathway Engineering Enhances Secretion of Cellobiohydrolase I from Trichoderma Reesei in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2014, 117, 45–52.
  • Wang, T.Y.; Huang, C.J.; Chen, H.L.; Ho, P.C.; Ke, H.M.; Cho, H.Y.; Ruan, S.K.; Hung, K.Y.; Wang, I.L.; Cai, Y.W.; et al. Systematic Screening of Glycosylation- and Trafficking-Associated Gene Knockouts in Saccharomyces cerevisiae Identifies Mutants with Improved Heterologous Exocellulase Activity and Host Secretion. BMC Biotechnol. 2013, 13, 71.
  • Suzuki, H.; Imaeda, T.; Kitagawa, T.; Kohda, K. Deglycosylation of Cellulosomal Enzyme Enhances Cellulosome Assembly in Saccharomyces cerevisiae. J. Biotechnol. 2012, 157, 64–70.
  • Ho, N.W.; Chen, Z.; Brainard, A.P. Genetically Engineered Saccharomyces Yeast Capable of Effective Cofermentation of Glucose and Xylose. Appl. Environ. Microbiol. 1998, 64, 1852–1859.
  • Hahn-Ha¨Gerdal, B.; Karhumaa, K.; Jeppsson, M.; Gorwa-Grauslund, M.F. Metabolic Engineering for Pentose Utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 2007, 108, 147–177.
  • Matsushika, A.; Inoue, H.; Kodaki, T.; Sawayama, S. Ethanol Production from Xylose in Engineered Saccharomyces cerevisiae Strains: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2009, 84, 37–53.
  • Van Vleet, J.H.; Jeffries, T.W. Yeast Metabolic Engineering for Hemicellulosic Ethanol Production. Curr. Opin. Biotechnol. 2009, 20, 300–306.
  • Inokuma, K.; Hasunuma, T.; Kondo, A. Efficient Yeast Cell-Surface Display of Exo- and Endo-Cellulase Using the SED1 Anchoring Region and Its Original Promoter. Biotechnol. Biofuels. 2014, 7, 8.
  • Yamada, R.; Taniguchi, N.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Direct Ethanol Production from Cellulosic Materials Using a Diploid Strain of Saccharomyces cerevisiae with Optimized Cellulase Expression. Biotechnol. Biofuels. 2011, 4, 8.
  • Katahira, S.; Fujita, Y.; Mizuike, A.; Fukuda, H.; Kondo, A. Construction of a Xylan-Fermenting Yeast Strain through Codisplay of Xylanolytic Enzymes on the Surface of Xylose-Utilizing Saccharomyces cerevisiae Cells. Appl. Environ. Microbiol. 2004, 70, 5407–5414.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.