285
Views
9
CrossRef citations to date
0
Altmetric
Articles

Fungal co-culture increases ligninolytic enzyme activities: statistical optimization using response surface methodology

, , &
Pages 787-798 | Received 24 Apr 2018, Accepted 23 Jun 2018, Published online: 10 Oct 2018

References

  • Kuhar, F.; Castiglia, V.; Levin, L. Enhancement of Laccase Production and Malachite Green Decolorization by Co-Culturing Ganoderma Lucidum and Trametes Versicolor in Solid-State Fermentation. Int. Biodeterior. Biodegradation. 2015, 104, 238–243. doi:10.1016/j.ibiod.2015.06.017.
  • Flores, C.; Casasanero, R.; Trejo-Hernández, M. R.; Galindo, E.; Serrano-Carreon, L. Production of Laccase by Pleurotus Ostreatus in Submerged Fermentation in Co-Culture Trichoderma Viride. J. App. Microbiol. 2010, 108, 810–817. doi:10.1111/j.1365-2672.2009.04493.x.
  • Ijoma, G. N.; Tekere, M. Potential Microbial Applications of Co-Cultures Involving Ligninolytic Fungi in the Bioremediation of Recalcitrant Xenobiotics Compounds. Int. J. Environ. Sci. Technol. 2017, 14, 1787–1806. doi:10.1007/s13762-017-1269-3.
  • Barathidasan, K.; Reetha, D.; John, M. D.; Sriram, N.; Govindammal, M. Biodegradation of Clorpyrifos by Co-Culture of Cellulomonas fimi and Phanerochaete chrysosporium and Phanerochaete chrysosporium. Afr. J. Microbiol. Res. 2014, 8, 961–966. doi:10.5897/AJMR2013.6530.
  • Pan, K.; Zhao, N.; Yin, Q.; Zhang, T.; Xu, X.; Fan, W.; Hong, Y.; Fan, Z.; Xiao, Y. Induction of a Laccase Lcc9 from Coprinopsis Cinerea by Fungal Coculture and Its Application on Indigo Dye Decolorization. Bioresour Technol. 2014, 162, 45–52. doi:10.1016/j.biortech.2014.03.116.
  • Yuli-Yanto, D. H.; Tachibana, S. Potential of Fungal Co-Culturing for Accelerated Biodegradation of Petroleum Hydrocarbons in Soil. J. Hazard Mater. 2014, 278, 454–463. doi:10.1016/j.jhazmat.2014.06.039.
  • Yuli-Yanto, D. H.; Hidayat, A.; Tachibana, S. Periodical Biostimulation with Nutrient Addition and Bioaugmentation Using Mixed Fungal Cultures to Maintain Enzymatic Oxidation during Extended Bioremediation of Oily Soil Microcosms. Int. Biodeterior. Biodegradation. 2017, 116, 112–123. doi:10.1016/j.ibiod.2016.10.023.
  • Machín-Ramírez, C.; Morales, D.; Martínez-Morales, F.; Okoh, A. I.; Trejo-Hernández, M. R. Benzo[a]Pyrene Removal by Axenic- and Co-Culture of Some Bacterial and Fungal Strains. Int Biodeterior Biodegradation. 2010, 64, 538–544. doi:10.1016/j.ibiod.2010.05.006.
  • Thion, C.; Cébron, A.; Beguiristain, T.; Leyval, C. PAH Biotransformation and Sorption by Fusarium solani and Arthrobacter Oxudans Isolated from a Polluted Soil in Axenic Cultures and Mixed Co-Cultures. Int. Biodeterior. Biodegradation. 2012, 68, 28–35. doi:10.1016/j.ibiod.2011.10.012.
  • Plácido, J.; Capareda, S. Ligninolytic Enzymes: A Biotechnological Alternative for Bioethanol Production. Bioresour. Bioprocess. 2015, 2, 1–12. doi:10.1186/s40643-015-0049-5.
  • dos Santos, T. C.; dos Santos Reis, N.; Silva, T. P.; Pereira Machado, F. d P.; Ferereira Bonomo, R. C.; Franco, M. Prickly Palm Cactus Husk a Raw Material for Production of Ligninolytic Enzymes by Aspergillus niger. Food Sci. Biotechnol. 2016, 25, 205–211. doi: 10.1007/s10068-016-0031-9.
  • Qi-He, C.; Krügener, S.; Hirth, T.; Rupp, S.; Zibek, S. Co-Cultured Production of Lignin-Modifying Enzymes with White-Rot Fungi. Appl. Biochem. Biotechnol. 2011, 165, 700–718. doi:10.1007/s12010-011-9289-9.
  • Bertrand, B.; Martínez-Morales, F.; Trejo-Hernández, M. R. Fungal Laccase: Induction and Production. Rev. Mex. Ing. Quím. 2013, 12, 473–488.
  • Baldrian, P. Increase of Laccase Activity During Interspecific Interactions of White-Rot Fungi. FEMS Microbiol. Ecol. 2004, 50, 245–253. doi:10.1016/j.femsec.2004.07.005.
  • Mucha, J. Changes in Hyphal Morphology and Activity of Phenoloxidases during Interactions Between Selected Ectomycorrhizal Fungi and Two Species of Trichoderma. Antonie Van Leeuwenhoek. 2011, 100, 155–160. doi:10.1007/s10482-011-9556-3.
  • Periasamy, R.; Palvannan, T. Optimization of Laccase Production by Pleurotus Ostreatus IMI 395545 Using the Taguchi DOE Methodology. J. Basic Microbiol. 2010, 50, 456–548. doi:10.1002/jobm.201000095.
  • Chenthamarakshan, A.; Parambayil, N.; Miziriya, N.; Soumya, P. S.; Kiran, M. S.; Ramgopal, A.; Dileep, A.; Nambisan, P. Optimization of Laccase Production from Marasmiellus Palmivorus LA1 by Taguchi Method of Design of Experiments. BMC Biotechnol. 2017, 17, 1–10. doi:10.1186/s12896-017-0333-x.
  • Carvalho-Dos Santos, T.; Riany-De Brito, A.; Ferreira-Bonomo, R. C.; Vieira-Pires, A. J.; Aguilar-Oliveira, E.; Pereira-Silva, T.; Franco, M. Statistical Optimization of Culture Conditions and Characterization for Ligninolytic Enzymes Produced from Rhizopus sp. using Prickly Palm Cactus Husk. Chem. Eng. Commun. 2017, 204, 55–63. doi:10.1080/00986445.2016.1230851.
  • Krishna-Prasad, K.; Venkata-Mohan, S.; Sreenivas-Rao, R.; Ranjan Pati, B.; Sarma, P. N. Laccase Production by Pleurotus ostreatus 1804: Optimization of Submerged Culture Conditions by Taguchi DOE Methodology. Biochem. Eng. J. 2005, 24, 17–26. doi:10.1016/j.bej.2005.01.019.
  • Chan-Cupul, W.; Juárez-González, M.; Ruiz-Sánchez, E.; Sánchez-Rangel, J. C.; Molina-Ochoa, J.; Galindo-Velasco, E. Solubilización de Fuentes Inorgánicas de Fósforo por Micromicetos Aislados de la Rizosfera de Papaya Var. “Maradol” (Carica Papaya L.) y su Susceptibilidad a Herbicidas Convencionales. Rev. Int. Contam. Ambie. 2018, 34, 281–295.
  • Sivakumar, R.; Rajedran, R.; Balakumar, C.; Tamilvendan, M. Isolation, Screening and Optimization of Production Medium for Thermostable Laccase Production from Ganoderma Sp. Int. J. Eng. Sci. Technol. 2010, 2, 7133–7141.
  • Alcalde, M.; Bulter, T. Colorimetric Assays for Screening Laccases. In Directed Enzyme Evolution. Methods in Molecular Biology™; Arnold, F.H. and Georgiou, G., Eds. Humana Press, Clifton, NJ, U.S.A., 2003. doi:10.1385/1592593968.
  • Glenn, J. K.; Gold, M. H. Decolorization of Several Polymeric Dyes by the Lignin-Degrading Basidiomycetes Phanerochaete chrysosporium. Appl. Environ. Microbiol. 1983, 45, 1741–1747.
  • Klassen, N. V.; Marchington, D.; McGowan, H. C. E. H2O2 Determination by the I3- Method and by KMnO4 Titration. Anal. Chem. 1994, 66, 2921–2925. doi:10.1021/ac00090a020.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.
  • Hiscox, J.; Baldrian, P.; Rogers, H. J.; Boddy, L. Changes in Oxidative Enzyme Activity during Interspecific Mycelial Interactions Involving the White-Rot Fungus Trametes Versicolor. Fungal Genet. Biol. 2010, 47, 562–571. doi:10.1016/j.fgb.2010.03.007.
  • Chi, Y.; Hatakka, A.; Maijala, P. Can Co-Culturing of Two White-Rot Fungi Increase Lignine Degradation and the Production of Lignin-Degrading Enzymes? Int. Biodeterior. Biodegradation. 2007, 59, 32–399. doi:10.1016/j.ibiod.2006.06.025.
  • Bader, J.; Mast-Gerlach, E.; Popovic, M. K.; Bajpai, R.; Stah, U. Relevance of Microbial Co-Culture Fermentation in Biotechnology. J. Appl. Microbiol. 2010, 109, 371–387. doi:10.1111/j.1365-2672.2009.04659.x.
  • Ramírez-Cavazos, L. I.; Junghanns, C.; Nair, R.; Cárdenas-Chávez, D. L.; Hernández-Luna, C.; Agathos, S. N.; Parra, R. Enhanced Production of Thermostable Laccases from a Native Strain of Pycnoporus Sanguineus Using a Central Composite Design. J. Zhejiang Univ. Sci. B 2014, 15, 343–352. doi:10.1631/jzus.B1300246.
  • Dwivedi, P.; Vivekanand, V.; Pareek, N.; Sharma, A.; Singh, R. Co-Cultivation of Mutant Penicillium Oxalicum SAUE-3.510 and Pleurotus Ostreatus for Simultaneous Biosynthesis of Xylanase and Laccase under Solid-State Fermentation. New Biotechnol. 2011, 28, 616–626. doi:10.1016/j.nbt.2011.05.006.
  • Kannaiyan, R.; Mahinpey, N.; Kostenko, V.; Martinuzzi, R. J. Nutrient Media Optimization for Simultaneous Enhancement of Laccase and Peroxidase Production by Co-Culture of Dichomitus Squalens and Ceriporiopsis Subvermispora. Biotechnol. Appl. Biochem. 2015, 62, 173–185. doi:10.1002/bab.1263.
  • Chan-Cupul, W.; Heredia-Abarca, G.; Martínez-Carrera, D.; Rodríguez-Vázquez, R. Enhancement of Ligninolytic Enzyme Activities in a Trametes Maxima-Paecilomyces Carneus Co-Culture: key Factors Revealed after Screening Using a Plackett-Burman Experimental Design. Electron J. Biotechnol. 2014, 17, 114–121. doi:10.1016/j.ejbt.2014.04.007.
  • Jonas, U.; Hammer, E.; Schauer, F.; Bollag, J. M. Transformation of 2-Hydroxydibenzofuran by Laccases of the White Rot Fungi Trametes Versicolor and Pycnoporus Cinabarrinus of Oligomerization Products. Biodegradation. 1998, 8, 321–328.
  • Chan-Cupul, W.; Heredia-Abarca, G.; Rodríguez-Vázquez, R. Aislamiento y Evaluación De La Actividad Enzimática Ligninolítica De Macromicetos Del Estado De Veracruz, México. Rev. Int. Contam. Ambie. 2016, 32, 339–351. doi: 10.20937/RICA.2016.32.03.08.
  • Lorenzo, M.; Moldes, D.; Sanromán, M. AEffect of Heavy Metals on the Production of Several Laccase Isoenzymes by Tratametes Versicolor and on Their Ability to Decolorize Dyes. Chemosphere. 2006, 63, 912–917. doi:10.1016/j.chemosphere.2005.09.046.
  • Murugesan, K.; Kim, Y.-M.; Jeon, J.-R.; Chang, Y.-S. Effect of Metal Ions on Reactive Dye Decolorization by Laccase from Ganoderma Lucidum. J. Hazard Mater. 2009, 168, 523–529. doi:10.1016/j.jhazmat.2009.02.075.
  • Kosman, D. Molecular Mechanism of Iron Uptake in Fungi. Mol. Microbiol. 2003, 47, 1185–1197. doi:10.1046/j.1365-2958.2003.03368.x.
  • Kannaiyan, R.; Mahinpey, N.; Martinuzzi, R. J.; Kostenko, V. Induction and Suppression of Dichomitus squalens and Ceriporiopsis subvermispora Peroxidase Activity by Manganese Sulfate in Response to Carbon and Nitrogen Sources. Can. J. Chem. Eng. 2014, 92, 185–779. doi:10.1002/cjce.21935.
  • Alves da Cunha, M. A.; Barbosa, A. M.; Giese, E. C.; Dekker, R. F. H. The Effect of Carbohydrate Carbon Source on the Production of Constitutive and Inducible Laccases by Botryosphaeria Sp. J. Basic Microbiol. 2003, 43, 385–392. doi:10.1002/jobm.200310250.
  • Saetang, J.; Babel, S. Effect of Glucose on Enzyme Activity and Color Removal by Trametes Versicolor for High Strength Landfill Leachate. Water Sci. Technol. 2010, 62, 2519–2526. doi:10.2166/wst.2010.552.
  • Scodeller, P.; Carballo, R.; Szamocki, R.; Levin, L.; Forchiassin, F.; Calvo, E. J. Layer-by-Layer Self-Assembled Osmium Polymer-Mediated Laccase Oxygen Cathodes for Biofuel Cells: The Role of Hydrogen Peroxide. J. Am. Chem. Soc. 2010, 132, 11132–11140. doi:10.1021/ja1020487.
  • Milton, R. D.; Giroud, F.; Thumser, A. E.; Minteer, S.; Slade, R. C. T. Hydrogen Peroxide Produced by Glucose Oxidase Affects the Performance of Laccase Cathodes in Glucose/Oxygen Fuel Cells: FAD-Dependent Glucose Dehydrogenase as a Replacement. Phys. Chem. Chem. Phys. 2013, 15, 19371–19379. doi:10.1039/c3cp53351d.
  • Baldrian, P.; Gabriel, J. Copper and Cadmium Increase Laccase Activity in Pleurotus Ostreatus. FEMS Microbiol. Lett. 2002, 206, 69–74. doi:10.1111/j.1574-6968.2002.tb10988.x.
  • Cho, N. S.; Wilkolazka, A. J.; Staszczak, M.; Cho, H. Y.; Ohga, S. The Role of Laccase from White Rot Fungi to Stress Conditions. J. Fac. Agr. Kyushu Univ. 2009, 54, 81–83.
  • Iamtasna, B.; Piyasombatkul, T.; Prichanont, S.; Muangnapoh, C. Use of Hemicellulase in Sequence with Hydrogen Peroxide and Laccase for Improvement of Teak Venner Surface Color. J. Wood Sci. 2010, 56, 184–188. doi:10.1007/s10086-009-1095-4.
  • Bermek, H.; Li, K.; Eriksson, K.-E.Studies on Inactivation and Stabilization of Manganese Peroxidase from Trametes versicolor. In Proceedings of the 8th ICBPPI Meeting. Biotechnology in the Pulp and Paper Industry; Viikari, L. and Lantto, R., Eds., Progress Biotechnol; Elsevier Science: Amsterdam, The Netherlands, 2002; pp. 141–149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.