255
Views
4
CrossRef citations to date
0
Altmetric
Articles

A combined treatment using ethylmethane sulfonate and ultraviolet light to compare amylase production by three Bacillus sp. isolates

, , , , &
Pages 815-822 | Received 29 May 2018, Accepted 28 Jul 2018, Published online: 28 Sep 2018

References

  • Hammami, A.; Fakhfakh, N.; Abdelhedi, O.; Nasri, M.; Bayoudh, A. Proteolytic and Amylolytic Enzymes from a Newly Isolated Bacillus mojavensis SA: Characterization and Applications as Laundry Detergent Additive and in Leather Processing. Int. J. Biol. Macromol. 2018, 108, 56–68. doi:10.1016/j.ijbiomac.2017.11.148
  • Awasthi, M.K.; Wong, J.W.C.; Kumar, S.; Awasthi, S.K.; Wang, Q.; Wang, M.; Ren, X.; Zhao, J.; Chen, H.; Zhang, Z.; et al. Biodegradation of Food Waste Using Microbial Cultures Producing Thermostable α-Amylase and Cellulase under Different pH and Temperature. Bioresour. Technol. 2018, 248(Pt B), 160–170. doi:10.1016/j.biortech.2017.06.160
  • Simair, A.A.; Qureshi, A.S.; Khushk, I.; Ali, C.H.; Lashari, S.; Bhutto, M.A.; Mangrio, G.S.; Lu, C. Production and Partial Characterization of α-Amylase Enzyme from Bacillus sp. BCC 01-50 and Potential Applications. Biomed. Res. Int. 2017, 2017, 9173040
  • Liu, F.; Wang, B.; Ye, Y.; Pan, L. High Level Expression and Characterization of Tannase tan7 Using Aspergillus niger SH-2 with Low-Background Endogenous Secretory Proteins as the Host. Protein. Expr. Purif. 2018, 144, 71–75. doi:10.1016/j.pep.2017.11.003
  • Ozer, A.; Uzuner, U.; Guler, H.I.; et al. Improved Pulp Bleaching Potential of Bacillus subtilis WB800 through Overexpression of Three Lignolytic Enzymes from Various Bacteria. Biotechnol. Appl. Biochem. 2017, 560–571. doi:10.1002/bab.1637
  • Lin, L.L.; Chyau, C.C.; Hsu, W.H. Production and Properties of a Raw-Starch-Degrading Amylase from the Thermophilic and Alkaliphilic Bacillus sp. TS-23. Biotechnol. Appl. Biochem. 1998, 28, 61–68.
  • Shad, Z.; Mirhosseini, H.; Hussin, A.S.M.; Forghani, B.; Motshakeri, M.; Manap, M.Y.A. Aqueous Two-Phase Purification of α-Amylase from White Pitaya (Hylocereus undatus) Peel in Polyethylene Glycol/Citrate System: Optimization by Response Surface Methodology. Biocatal. Agric. Biotechnol. 2018, 14, 305–313.
  • Agrawal, R.; Satlewal, A.; Verma, A.K. Development of a β-Glucosidase Hyperproducing Mutant by Combined Chemical and UV Mutagenesis. Biotech. 2013, 3, 381–388. doi:10.1007/s13205-012-0095-z
  • Tee, K.K.; Wong, T.S. Polishing the Craft of Genetic Diversity Creation in Directed Evolution. Biotechnol. Adv. 2013, 31, 1707–1721. doi:10.1016/j.biotechadv.2013.08.021
  • Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275.
  • Abd-Elhalem, B.T.; El-Sawy, M.; Gamal, R.F.; Abou-Taleb, K.A. Production of Amylases from Bacillus amyloliquefaciens under Submerged Fermentation Using Some Agro-Industrial By-Products. Ann. Agric. Sci. 2015, 60, 193–202.
  • Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970, 227, 680–685. doi:10.1038/227680a0
  • Hagström, A.; Pinhassi, J.; Zweifel, U.L. Biogeographical Diversity among Marine Bacterioplankton. Aquat. Microb. Ecol. 2000, 21, 231–244. doi:10.3354/ame021231
  • Santana, M.L.; Maciel Paulo, E.; Bispo, J.A.; et al. Production and Partial Characterization of β-1,3-Glucanase Obtained from Rhodotorula oryzicola. Prep. Biochem. Biotechnol. 2018, 48, 165–171. doi:10.1080/10826068.2017.1421962
  • Sivaramakrishnan, R.; Muthukumar, K. Isolation of Thermo-Stable and Solvent-Tolerant Bacillus sp. Lipase for the Production of Biodiesel. Appl. Biochem. Biotechnol. 2012, 166, 1095–1111. doi:10.1007/s12010-011-9497-3
  • Saranya, P.; Sukanya Kumari, H.; Prasad Rao, B.; Sekaran, G. Lipase Production from a Novel Thermo-Tolerant and Extreme Acidophile Bacillus pumilus Using Palm Oil as the Substrate and Treatment of Palm Oil-Containing Wastewater. Environ. Sci. Pollut. Res. Int. 2014, 21, 3907–3919. doi:10.1007/s11356-013-2354-x
  • Gutiérrez-Arnillas, E.; Arellano, M.; Deive, F.J.; Rodríguez, A.; Sanromán, M.Á. Unravelling the Suitability of Biological Induction for Halophilic Lipase Production by Halomonas sp. LM1C Cultures. Bioresour. Technol. 2017, 239, 368–377. doi:10.1016/j.biortech.2017.04.128
  • Deive, F.J.; Álvarez, M.S.; Morán, P.; Sanromán, M.Á.; Longo, M.A. A Process for Extracellular Thermostable Lipase Production by a Novel Bacillus thermoamylovorans Strain. Bioprocess Biosyst. Eng. 2012, 35, 931–941. doi:10.1007/s00449-011-0678-9
  • Narasimhan, M.K.; Ethiraj, S.; Krishnamurthi, T.; et al. Purification, Biochemical, and Thermal Properties of Fibrinolytic Enzyme Secreted by Bacillus cereus SRM-001. Prep. Biochem. Biotechnol. 2017, 6, 1–9.
  • Oliveira, F.; Moreira, C.; Salgado, J.M.; Abrunhosa, L.; Venâncio, A.; Belo, I. Olive Pomace Valorization by Aspergillus Species: Lipase Production Using Solid-State Fermentation. J. Sci. Food Agric. 2016, 96, 3583–3589. doi:10.1002/jsfa.7544
  • Prasad Uday, U.S.; Bandyopadhyay, T.K.; Goswami, S.; Bhunia, B. Optimization of Physical and Morphological Regime for Improved Cellulase Free Xylanase Production by Fed Batch Fermentation Using Aspergillus niger (KP874102.1) and Its Application in Bio-Bleaching. Bioengineered 2017, 8, 137–146. doi:10.1080/21655979.2016.1218580
  • Yang, P.; Zhang, H.; Cao, L.; Zheng, Z.; Jiang, S. Construction of Aspergillus niger Integrated with Cellulase Gene from Ampullaria Gigas Spix for Improved Enzyme Production and Saccharification of Alkaline-Pretreated Rice Straw. Biotech. 2016, 6, 236. doi:10.1007/s13205-016-0545-0
  • Davison, S.A.; den Haan, R.; van Zyl, W.H. Heterologous Expression of Cellulase Genes in Natural Saccharomyces cerevisiae Strains. Appl. Microbiol. Biotechnol. 2016, 100, 8241–8254. doi:10.1007/s00253-016-7735-x
  • Khatri, B.P.; Bhattarai, T.; Shrestha, S.; Maharjan, J. Alkaline Thermostable Pectinase Enzyme from Aspergillus niger Strain MCAS2 Isolated from Manaslu Conservation Area, Gorkha, Nepal. Springerplus 2015, 4, 488. doi:10.1186/s40064-015-1286-y
  • Gupta, A.; Jana, A.K. Effects of Wheat Straw Solid Contents in Fermentation Media on Utilization of Soluble/Insoluble Nutrient, Fungal Growth and Laccase Production. Biotech. 2018, 8, 35. doi:10.1007/s13205-017-1054-5
  • He, P.; Zhang, Z.; Cai, D.; Chen, Y.; Wang, H.; Wei, X.; Li, S.; Chen, S. High-Level Production of α-Amylase by Manipulating the Expression of Alanine Racamase in Bacillus licheniformis. Biotechnol. Lett. 2017, 39, 1389–1394. doi:10.1007/s10529-017-2359-5
  • Li, S.; Tang, B.; Xu, Z.; Chen, T.; Liu, L. Fermentation Optimization and Unstructured Kinetic Model for Cellulase Production by Rhizopus Stolonifer Var. reflexus TP-02 on Agriculture by-Products. Appl. Biochem. Biotechnol. 2015, 177, 1589–1606. doi:10.1007/s12010-015-1839-0
  • Juwon, A.D.; Emmanuel, O.F. Experimental Investigations on the Effects of Carbon and Nitrogen Sources on Concomitant Amylase and Polygalacturonase Production by Trichoderma viride BITRS-1001 in Submerged Fermentation. Biotechnol. Res. Int. 2012, 2012, 1. doi:10.1155/2012/904763
  • Li, X.; Wang, Y.; Park, J.-T.; Gu, L.; Li, D. An Extremely Thermostable Maltogenic Amylase from Staphylothermus marinus: Bacillus Expression of the Gene and Its Application in Genistin Glycosylation. Int. J. Biol. Macromol. 2018, 107, 413–417. (Pt A), doi:10.1016/j.ijbiomac.2017.09.007
  • Prajapati, V.S.; Ray, S.; Narayan, J.; Joshi, C.C.; Patel, K.C.; Trivedi, U.B.; Patel, R.M. Draft Genome Sequence of a Thermostable, Alkaliphilic α-Amylase and Protease Producing Bacillus amyloliquefaciens Strain KCP2. Biotech. 2017, 7, 372. doi:10.1007/s13205-017-1005-1
  • Mohammad, B.T.; Al Daghistani, H.I.; Jaouani, A.; Abdel-Latif, S.; Kennes, C. Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes. Int. J. Microbiol. 2017, 2017, 1. doi:10.1155/2017/6943952
  • Lu, Z.; Tian, C.; Li, A.; Zhang, G.; Ma, Y. Identification and Characterization of a Novel Alkaline α‑Amylase Amy703 Belonging to a New Clade from Bacillus pseudofirmus . J. Ind. Microbiol. Biotechnol. 2014, 41, 783–793. doi:10.1007/s10295-014-1420-9
  • Kalpana, B.J.; Sindhulakshmi, M.; Pandian, S.K. Amylase Enzyme from Bacillus subtilis S8-18: A Potential Desizing Agent from the Marine Environment. Biotechnol. Appl. Biochem. 2014, 61, 134–144. doi:10.1002/bab.1122
  • Bhange, K.; Chaturvedi, V.; Bhatt, R. Simultaneous Production of Detergent Stable Keratinolytic Protease, Amylase and Biosurfactantby Bacillus subtilis PF1 Using Agro Industrial Waste. Biotechnol. Rep. (Amst). 2016, 10, 94–104. doi:10.1016/j.btre.2016.03.007
  • Arabacı, N.; Arıkan, B. Isolation and Characterization of a Cold-Active, Alkaline, Detergent Stable α-Amylase from a Novel Bacterium Bacillus subtilis N8. Prep. Biochem. Biotechnol. 2018, 48, 419–426. doi:10.1080/10826068.2018.1452256
  • Takenaka, S.; Miyatake, A.; Tanaka, K.; Kuntiya, A.; Techapun, C.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Watanabe, M.; Yoshida, K-i.; et al. Characterization of the Native Form and the Carboxy-Terminally Truncated Halotolerant Form of α-Amylases from Bacillus subtilis Strain FP-133. J. Basic Microbiol. 2015, 55, 780–789. doi:10.1002/jobm.201400813
  • Aryati, P.C.; Pangastuti, A.; Sari, S.L.A. Amylase Production Potentials of Bacterial Isolates Obtained from the Gut of Oryctes rhinoceros Larvae. IOP Conf. Ser: Mater. Sci. Eng. 2017, 193, 012006. doi:10.1088/1757-899X/193/1/012006
  • Tigue, M.A.M.; Kelly, C.T.; Doyle, E.M.; Fogarty, W.M. The Alkaline Amylase of the Alkalophilic Bacillus sp. IMD 370. Enzyme. Microb. Technol. 1995, 17, 570–573. doi:10.1016/0141-0229(94)00098-C
  • Ferrari, M.; Mazzoli, R.; Morales, S.; Fedi, M.; Liccioli, L.; Piccirillo, A.; Cavaleri, T.; Oliva, C.; Gallo, P.; Borla, M.; et al. Enzymatic Laundry for Old Clothes: immobilized Alpha-Amylase from Bacillus sp. for the Biocleaning of an Ancient Coptic Tunic. Appl. Microbiol. Biotechnol. 2017, 101, 7041–7052. doi:10.1007/s00253-017-8437-8
  • Farhat-Khemakhem, A.; Blibech, M.; Boukhris, I.; Makni, M.; Chouayekh, H. Assessment of the Potential of the Multi-Enzyme Producer Bacillus amyloliquefaciens US573 as Alternative Feed Additive. J. Sci. Food Agric. 2018, 98, 1208–1215. doi:10.1002/jsfa.8574
  • Wang, H.; Zhou, W.; Li, H.; Rie, B.; Piao, C. Improved Activity of β-Cyclodextrin Glycosyltransferase from Bacillus sp. N-227 via Mutagenesis of the Conserved Residues. 3 Biotech 2017, 7, 149. doi:10.1007/s13205-017-0725-6
  • Hmani, H.; Daoud, L.; Jlidi, M.; Jalleli, K.; Ben Ali, M.; Hadj Brahim, A.; Bargui, M.; Dammak, A.; Ben Ali, M. A Bacillus subtilis Strain as Probiotic in Poultry: Selection Based on in Vitro Functional Properties and Enzymatic Potentialities. J. Ind. Microbiol. Biotechnol. 2017, 44, 1157–1166. doi:10.1007/s10295-017-1944-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.