535
Views
22
CrossRef citations to date
0
Altmetric
Articles

Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes

&
Pages 842-852 | Received 23 Jun 2018, Accepted 11 Aug 2018, Published online: 10 Oct 2018

References

  • Uzyol, H.K.; Saçan, M.T. Bacterial Cellulose Production by Komagataeibacter hansenii Using Algae-Based Glucose. Environ. Sci. Pollut. Res. 2017, 24, 11154. doi:10.1007/s11356-016-7049-7.
  • Esa, F.; Tasirin, S.M.; Rahman, N.A. Overview of Bacterial Cellulose Production and Application. Ital. Oral. Surg. 2014, 2, 113. doi:10.1016/j.aaspro.2014.11.017.
  • Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 739. doi:10.1128/MMBR.66.4.739.2002.
  • Chawla, P.R.; Bajaj, I.B.; Survase, S.A.; Singhal, R.S. Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol. 2009, 47, 107–124.
  • Campano, C.; Balea, A.; Blanco, A.; Negro, C. Enhancement of the Fermentation Process and Properties of Bacterial Cellulose: A Review. Cellulose 2016, 23, 57–91. doi:10.1007/s10570-015-0802-0.
  • Kuo, C.H.; Chen, J.H.; Liou, B.K.; Lee, C.K. Utilization of Acetate Buffer to Improve Bacterial Cellulose Production by Gluconacetobacter xylinus. Food Hydrocoll. 2016, 53, 98–103. doi:10.1016/j.foodhyd.2014.12.034.
  • Ross, P.; Mayer, R.; Benziman, M. Cellulose Biosynthesis and Function in Bacteria. Microbiol. Rev. 1991, 55, 35–58. doi:10.1016/j.bbalip.2012.08.009.
  • Güzel, M.; Akpınar, Ö. Production and Characterization of Bacterial Cellulose from Citrus Peels. Waste and Biom Valoriz. 2018, 1–11 doi:10.1007/s12649-018-0241-x.
  • Stasiak, L.; Błaejak, S. Acetic Acid Bacteria-Perspectives of Application in Biotechnology-a Review. Polish J. Food Nutr. Sci. 2009, 59, 17.
  • Keshk, S.M. Bacterial Cellulose Production and Its Industrial Applications. J. Bioprocess. Biotech. 2014, 4, 2. doi:10.4172/2155-9821.1000150.
  • Casaburi, A.; Montoya Rojo, Ú.; Cerrutti, P.; Vázquez, A.; Foresti, M.L. Carboxymethyl Cellulose with Tailored Degree of Substitution Obtained from Bacterial Cellulose. Food Hydrocoll. 2017, 75, 147–156. doi:10.1016/j.foodhyd.2017.09.002.
  • Tyagi, N.; Suresh, S. Isolation and Characterization of Cellulose Producing Bacterial Strain from Orange Pulp. Amr. 2012, 626, 475–479. doi:10.4028/www.scientific.net/AMR.626.475.
  • Ullah, H.; Santos, H.A.; Khan, T. Applications of Bacterial Cellulose in Food, Cosmetics and Drug Delivery. Cellulose 2016, 23, 2291–2314. doi:10.1007/s10570-016-0986-y.
  • Gayathri, G.; Srinikethan, G. Review on Production of Bacterial Cellulose from Wastewater and Its Applications. Res J. Chem. Environ. Sci. 2016, 4, 25–30.
  • Iguchi, M.; Yamanaka, S.; Budhiono, A. Bacterial Cellulose—a Masterpiece of Nature’s Arts. J. Mater. Sci. 2000, 35, 261–270. doi:10.1023/A:1004775229149.
  • Wu, S.C.; Lia, Y.K. Application of Bacterial Cellulose Pellets in Enzyme Immobilization. J. Mol. Catal. B Enzym. 2008, 54, 103–108. doi:10.1016/j.molcatb.2007.12.021.
  • Wei, B.; Yang, G.; Hong, F. Preparation and Evaluation of a Kind of Bacterial Cellulose Dry Films with Antibacterial Properties. Carbohydr. Polym. 2011, 84, 533–538. doi:10.1016/j.carbpol.2010.12.017.
  • Amin, M.C.I.M.; Abadi, A.G.; Ahmad, N.; Katas, H.; Jamal, J.A. Bacterial Cellulose Film Coating as Drug Delivery System: Physicochemical, Thermal and Drug Release Properties. Sains Malaysiana 2012, 41, 561–568.
  • Malm, C.J.; Risberg, B.; Bodin, A.; Bäckdahl, H.; Johansson, B.R.; Gatenholm, P.; Jeppsson, A. Small Calibre Biosynthetic Bacterial Cellulose Blood Vessels: 13-Months Patency in a Sheep Model. Scand. Cardiovasc. J. 2012, 46, 57–62. doi:10.3109/14017431.2011.623788.
  • Amnuaikit, T.; Chusuit, T.; Raknam, P.; Boonme, P. Effects of a Cellulose Mask Synthesized by a Bacterium on Facial Skin Characteristics and User Satisfaction. Med Devices Evid. Res. 2011, 4, 77–81. doi:10.2147/MDER.S20935.
  • Yamada, Y.; Yukphan, P.; Vu, H.T.L.; Muramatsu, Y.; Ochaikul, D.; Nakagawa, Y. Subdivision of the Genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: The Proposal of Komagatabacter Gen. nov., for Strains Accommodated to the Gluconacetobacter xylinus Group in the α-Proteobacteria. Ann. Microbiol. 2012, 62, 849–859. doi:10.1007/s13213-011-0288-4.
  • Mateo, E.; Torija, M.J.; Mas, A.; Bartowsky, E.J. Acetic Acid Bacteria Isolated from Grapes of South Australian Vineyards. Int. J. Food Microbiol. 2014, 178, 98–106. doi:10.1016/j.ijfoodmicro.2014.03.010.
  • Hestrin, S.; Schramm, M. Synthesis of Cellulose by Acetobacter xylinum. II. Preparation of Freeze-Dried Cells Capable of Polymerizing Glucose to Cellulose. Biochem. J. 1954, 58, 345.
  • Ishida, T.; Sugano, Y.; Nakai, T.; Shoda, M. Effects of Acetan on Production of Bacterial Cellulose by Acetobacter xylinum. Biosci. Biotechnol. Biochem. 2002, 66, 1677–1681. doi:10.1271/bbb.66.1677.
  • Jozala, A.F.; Pértile, R.A.N.; dos Santos, C.A.; de Carvalho Santos-Ebinuma, V.; Seckler, M.M.; Gama, F.M.; Pessoa, A. Bacterial Cellulose Production by Gluconacetobacter xylinus by Employing Alternative Culture Media. Appl. Microbiol. Biotechnol. 2015, 99, 1181–1190. doi:10.1007/s00253-014-6232-3
  • Nam, S.; French, A.D.; Condon, B.D.; Concha, M. Segal Crystallinity Index Revisited by the Simulation of X-Ray Diffraction Patterns of Cotton Cellulose Iβ and Cellulose II. Carbohydr. Polym. 2016, 135, 1–9. doi:10.1016/j.carbpol.2015.08.035.
  • Wada, M.; Sugiyama, J.; Okano, T. Native Celluloses on the Basis of Two Crystalline Phase (Iα/Iβ) System. J. Appl. Polym. Sci. 1993, 49, 1491–1496.
  • Aydin, Y. Isolation of Cellulose Producing Bacteria from Wastes of Vinegar Fermentation. Proc. World Congr. 2009, I, 20–23.
  • MamLouk, D.; Gullo, M. Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation. Indian J. Microbiol. 2013, 53, 377–384. doi:10.1007/s12088-013-0414-z.
  • Hassan, E.; Abdelhady, H.; Abd L-Salam, S.; Abdullah, S. The Characterization of Bacterial Cellulose Produced by Acetobacter xylinum and Komgataeibacter Saccharivorans under Optimized Fermentation Conditions. Bmrj. 2015, 9, 1–13. doi:10.9734/BMRJ/2015/18223.
  • Ramana, K.V.; Tomar, A.; Singh, L. Effect of Various Carbon and Nitrogen Sources on Cellulose Synthesis by Acetobacter xylinum. World J. Microbiol. Biotechnol. 2000, 16, 245–248. doi:10.1023/A:1008958014270.
  • Raghunathan, D. Production of Microbial Cellulose from the New Bacterial Strain Isolated from Temple Wash Waters. Microbiol. Appl. Sci. 2013, 2, 275–290.
  • Oikawa, T.; Ohtori, T.; Ameyama, M. Production of Cellulose from d-Mannitol by Acetobacter xylinum KU-1. Biosci. Biotechnol. Biochem. 1995, 59, 331–332. doi:10.1080/bbb.59.331.
  • Azila, A.; Giridhar, R.N.; Mark, C.L.; Janis, E.S.R.U. Glycerol as a Cheaper Carbon Source in Bacterial Cellulose (BC) Production by Gluconacetobacter xylinus Dsm46604 in Batch Fermentation System. Malaysian J. Anal. Sci. 2015, 19, 1131–1136.
  • Abdelhady, H.M.; Hassan, E.A.; El-Salam, S.S.A.; Abdullah, S.M. Bacterial Cellulose Production as Affected by Bacterial Strains and Some Fermentation Conditions. Nat. Sci. 2015, 13, 30–40.
  • Tsouko, E.; Kourmentza, C.; Ladakis, D.; Kopsahelis, N.; Mandala, I.; Papanikolaou, S.; Paloukis, F.; Alves, V.; Koutinas, A. Bacterial Cellulose Production from Industrial Waste and by-Product Streams. Ijms. 2015, 16, 14832–14849. doi:10.3390/ijms160714832.
  • Semjonovs, P.; Ruklisha, M.; Paegle, L.; Saka, M.; Treimane, R.; Skute, M.; Rozenberga, L.; Vikele, L.; Sabovics, M.; Cleenwerck, I. Cellulose Synthesis by Komagataeibacter rhaeticus Strain P 1463 Isolated from Kombucha. Appl. Microbiol. Biotechnol. 2017, 101, 1003–1012. doi:10.1007/s00253-016-7761-8.
  • Singhsa, P.; Narain, R.; Manuspiya, H. Physical Structure Variations of Bacterial Cellulose Produced by Different Komagataeibacter xylinus Strains and Carbon Sources in Static and Agitated Conditions. Cellulose 2018, 25, 1571–1581. doi:10.1007/s10570-018-1699-1.
  • Carreira, P.; Mendes, J.A.S.; Trovatti, E.; Serafim, L.S.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. Utilization of Residues from Agro-Forest Industries in the Production of High Value Bacterial Cellulose. Bioresour. Technol. 2011, 102, 7354–7360.
  • Dubey, S.; Sharma, R.K.; Agarwal, P.; Singh, J.; Sinha, N.; Singh, R.P. From Rotten Grapes to Industrial Exploitation: Komagataeibacter europaeus SGP37, a Micro-Factory for Macroscale Production of Bacterial Nanocellulose. Int. J. Biol. Macromol. 2017, 96, 52–60. doi:10.1016/j.ijbiomac.2016.12.016.
  • Santos, S.M.; Carbajo, J.M.; Villar, J.C. The Effect of Carbon and Nitrogen Sources on Bacterial Cellulose Production and Properties from Gluconacetobacter sucrofermentans CECT 7291 Focused on Its Use in Degraded Paper Restoration. BioResources 2013, 8, 3630–3645. doi:10.15376/biores.8.3.3630-3645.
  • Castro, C.; Zuluaga, R.; Álvarez, C.; Putaux, J.L.; Caro, G.; Rojas, O.J.; Mondragon, I.; Gañán, P. Bacterial Cellulose Produced by a New Acid-Resistant Strain of Gluconacetobacter Genus. Carbohydr. Polym. 2012, 89, 1033–1037. doi:10.1016/j.carbpol.2012.03.045.
  • Velmurugan, P.; Myung, H.; Govarthanan, M.; Yi, Y.J.; Seo, S.K.; Cho, K.M.; Lovanh, N.; Oh, B.T. Production and Characterization of Bacterial Cellulose by Leifsonia Sp. CBNU-EW3 Isolated from the Earthworm, Eisenia fetida. Biotechnol. Bioproc. E. 2015, 20, 410–416. doi:10.1007/s12257-014-0793-y.
  • Zahan, K.A.; Nordin, K.; Mustapha, M.; Mohd Zairi, M.N. Effect of Incubation Temperature on Growth of Acetobacter xylinum 0416 and Bacterial Cellulose Production. Amm. 2015, 815, 3–8. doi:10.4028/www.scientific.net/AMM.815.3.
  • Tyagi, N.; Suresh, S. Production of Cellulose from Sugarcane Molasses Using Gluconacetobacter intermedius SNT-1: Optimization & Characterization. J. Clean. Prod. 2016, 112, 71–80. doi:10.1016/j.jclepro.2015.07.054.
  • Kondo, T.; Rytczak, P.; Bielecki, S. Chapter 4 - Bacterial NanoCellulose Characterization – Bacterial Nanocellulose. Elsevier: Amsterdam, 2016.; 59–71 doi:10.1016/B978-0-444-63458-0.00004-4.
  • Popescu, C.M.; Popescu, M.C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. Spectral Characterization of Eucalyptus Wood. Appl. Spectrosc. 2007, 61, 1168–1177. doi:10.1366/000370207782597076.
  • Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3, 10. doi:10.1186/1754-6834-3-10.
  • Poletto, M.; Ornaghi, H.; Zattera, A. Native Cellulose: Structure, Characterization and Thermal Properties. Materials (Basel) 2014, 7, 6105–6119. doi:10.3390/ma7096105.
  • Goelzer, F.D.E.; Faria-Tischer, P.C.S.; Vitorino, J.C.; Sierakowski, M.R.; Tischer, C.A. Production and Characterization of Nanospheres of Bacterial Cellulose from Acetobacter xylinum from Processed Rice Bark. Mater. Sci. Eng. C. 2009, 29, 546–551. doi:10.1016/j.msec.2008.10.013.
  • Mohite, B.V.; Patil, S.V. Physical, Structural, Mechanical and Thermal Characterization of Bacterial Cellulose by G. hansenii NCIM 2529. Carbohydr. Polym. 2014, 106, 132–141. doi:10.1016/j.carbpol.2014.02.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.