259
Views
9
CrossRef citations to date
0
Altmetric
Articles

Stability and structure of Penicillium chrysogenum lipase in the presence of organic solvents

, , , &
Pages 977-982 | Received 17 Jul 2018, Accepted 15 Sep 2018, Published online: 21 Nov 2018

References

  • Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P. K. Lipase Catalysis in Organic Solvents: Advantages and Applications. Biol. Proced. Online. 2016, 18, 2–11.
  • Kapoor, M.; Gupta, M.N. Lipase Promiscuity and Its Biochemical Applications. Process Biochem. 2012, 47, 555–569.
  • Dachuri, V.; Boyineni, J.; Choi, S.; Chung, H.S.; Jang, S.H.; Lee, C. Organic Solvent-Tolerant, Cold-Adapted Lipases PML and LipS Exhibit Increased Conformational Flexibility in Polar Organic Solvents. J. Mol. Catal. B. Enzym. 2016, 131, 73–78.
  • Li, X.; Qian, P.; Wu, S.G.; Yu, H.Y. Characterization of an Organic Solvent-Tolerant Lipase from Idiomarina sp. W33 and Its Application for Biodiesel Production Using Jatropha Oil. Extremophiles 2014, 18, 171–178.
  • Grewal, J.; Khare, S.K. Lipases as Biocatalyst for Production of Biolubricants. In Environmentally Friendly and Biobased Lubricants, Sharma, B.J., Biresaw, G., Eds., CRC Press: Taylor & Francis Group, New York, 2016; pp. 187–204.
  • Sharma, S.; Kanwar, S.S. Organic Solvent Tolerant Lipases and Applications. Sci. World J. 2014, 2014, 1–15.
  • Agustian, J.; Kamaruddin, A.H.; Aboul‐Enein, H.Y. Factors Screening to Statistical Experimental Design of Racemic Atenolol Kinetic Resolution via Transesterification Reaction in Organic Solvent Using Free Pseudomonas fluorescens Lipase. Chirality 2017, 29, 376–385.
  • Anobom, C.D.; Pinheiro, A.S.; De-Andrade, R.A.; Aguieiras, E.C.G.; Andrade, G.C.; Moura, M.V.; Almeida, R.V.; Freire, D.M. From Structure to Catalysis: Recent Developments in the Biotechnological Applications of Lipases. BioMed Res. Intl. 2014, 2014, 1–11.
  • de Miranda, A.S.; Miranda, L.S.; de Souza, R.O. Lipases: Valuable Catalysts for Dynamic Kinetic Resolutions. Biotechnol. Adv. 2015, 33, 372–393.
  • Sarmah, N.; Revathi, D.; Sheelu, G.; Yamuna Rani, K.; Sridhar, S.; Mehtab, V.; Sumana, C. Recent Advances on Sources and Industrial Applications of Lipases. Biotechnol. Progress 2018, 34, 5–28.
  • Gupta, R.; Kumari, A.; Syal, P.; Singh, Y. Molecular and Functional Diversity of Yeast and Fungal Lipases: Their Role in Biotechnology and Cellular Physiology. Prog. Lipid Res. 2015, 57, 40–54.
  • Singh, A.K.; Mukhopadhyay, M. Overview of Fungal Lipase: A Review. Appl. Biochem. Biotechnol. 2012, 166, 486–520.
  • Kumari, A.; Ahmad, R.; Negi, S.; Khare, S.K. Biodegradation of Waste Grease by Penicillium Chrysogenum for Production of Fatty Acid. Bioresour. Technol. 2017, 226, 31–38.
  • Kumar, S.; Katiyar, N.; Ingle, P.; Negi, S. Use of Evolutionary Operation (EVOP) Factorial Design Technique to Develop a Bioprocess Using Grease Waste as a Substrate for Lipase Production. Bioresour. Technol. 2011, 102, 4909–4912.
  • Kumar, S.; Mathur, A.; Singh, V.; Nandy, S.; Khare, S.K.; Negi, S. Bioremediation of Waste Cooking Oil Using a Novel Lipase Produced by Penicillium Chrysogenum SNP5 Grown in Solid Medium Containing Waste Grease. Bioresour. Technol. 2012, 120, 300–304.
  • Kilcawley, K.N.; Wilkinson, M.G.; Fox, P.F. Determination of Key Enzyme Activities in Commercial Peptidase and Lipase Preparations from Microbial or Animal Sources. Enzyme Microb. Technol. 2002, 31, 310–320.
  • Li, N.; Zong, M.H. Lipases from the Genus Penicillium: Production, Purification, Characterization and Applications. J. Mol. Catal. B: Enz. 2010, 66, 43–54.
  • Lima, V.; Krieger, N.; Mitchell, D.; Fontana, J. Activity and Stability of a Crude Lipase from Penicillium Aurantiogriseum in Aqueous Media and Organic Solvents. Biochem. Eng. J. 2004, 18, 65–71.
  • Gutarra, M.L.; Godoy, M.G.; Maugeri, F.; Rodrigues, M.I.; Freire, D.M.; Castilho, L.R. Production of an Acidic and Thermostable Lipase of the Mesophilic Fungus Penicillium Simplicissimum by Solid-State Fermentation. Bioresour. Technol. 2009, 100, 5249–5254.
  • Tan, T.; Zhang, M.; Xu, J.; Zhang, J. Optimization of Culture Conditions and Properties of Lipase from Penicillium Camembertii Thom PG-3. Process Biochem. 2004, 39, 1495–1502.
  • Chahinian, H.; Vanot, G.; Ibrik, A.; Rugani, N.; Sarda, L.; Comeau, L. C. Production of Extracellular Lipases by Penicillium Cyclopium Purification and Characterization of a Partial Acylglycerol Lipase. Biosci. Biotechnol. Biochem. 2000, 64, 215–222.
  • Chinaglia, S.; Chiarelli, L.R.; Maggi, M.; Rodolfi, M.; Valentini, G.; Picco, A.M. Biochemistry of Lipolytic Enzymes Secreted by Penicillium Solitum and Cladosporium cladosporioides. Biosci. Biotechnol. Biochem. 2014, 78, 245–254.
  • Dheeman, D.S.; Antony-Babu, S.; Frías, J.M.; Henehan, G.T.M. Purification and Characterization of an Extracellular Lipase from a Novel Strain Penicillium sp. DS-39 (DSM 23773). J Mol. Catal. B: Enz. 2011, 72, 256–262.
  • Kumar, S.; Khare, S. Chloride Activated Halophilic α-Amylase from Marinobacter sp. EMB8: Production Optimization and Nanoimmobilization for Efficient Starch Hydrolysis. Enzyme Res. 2015, 2015, 1–9.
  • Rehman, S.; Bhatti, H.N.; Bilal, M.; Asgher, M.; Wang, P. Catalytic, Kinetic and Thermodynamic Characteristics of an Extracellular Lipase from Penicillium Notatum. Catal. Lett. 2017, 147, 281–291.
  • Maruthiah, T.; Immanuel, G.; Palavesam, A. Purification and Characterization of Halophilic Organic Solvent Tolerant Protease from Marine Bacillus sp. APCMST-RS7 and Its Antioxidant Potentials. Proc. Natl. Acad. Sci, India, Sect. B Biol. Sci. 2017, 87, 207–216.
  • Andreini, C.; Bertini, I.; Cavallaro, G.; Holliday, G.L.; Thornton, J.M. Metal Ions in Biological Catalysis: From Enzyme Databases to General Principles. J. Biol. Inorg. Chem. 2008, 13, 1205–1218.
  • Kumar, S.; Kikon, K.; Upadhyay, A.; Kanwar, S.S.; Gupta, R. Production, Purification, and Characterization of Lipase from Thermophilic and Alkaliphilic Bacillus coagulans BTS-3. Protein Expr. Purif. 2005, 41, 38–44.
  • Sugihara, A.; Shimada, Y.; Takada, N.; Nagao, T.; Tominaga, Y. Penicillium Abeanum Lipase: Purification, Characterization, and Its Use for Docosahexaenoic Acid Enrichment of Tuna Oil. J. Ferment. Bioeng. 1996, 82, 498–501.
  • Gupta, A.; Khare, S.K. Enzymes from Solvent-Tolerant Microbes: Useful Biocatalysts for Non-Aqueous Enzymology. Crit. Rev. Biotechnol. 2009, 29, 44–54.
  • Gupta, M.N. Enzyme Function in Organic Solvents. Eur. J. Biochem. 1992, 203, 25–32.
  • Hernandez-Rodriguez, B.; Cordova, J.; Barzana, E.; Favela-Torres, E. Effects of Organic Solvents on Activity and Stability of Lipases Produced by Thermotolerant Fungi in Solid-State Fermentation. J. Mol. Catal. B Enzym. 2009, 61, 136–142.
  • Cai, X.; Ma, J.; Wei, D.Z.; Lin, J.P.; Wei, W. Functional Expression of a Novel Alkaline-Adapted Lipase of Bacillus amyloliquefaciens from Stinky Tofu Brine and Development of Immobilized Enzyme for Biodiesel Production. Antonie Van Leeuwenhoek 2014, 106, 1049–1060.
  • Guncheva, M.; Zhiryakova, D. Catalytic Properties and Potential Applications of Bacillus Lipases. J. Mol. Catal. B Enzym. 2011, 68, 1–21.
  • Costas, L.; Bosio, V.E.; Pandey, A.; Castro, G.R. Effects of Organic Solvents on Immobilized Lipase in Pectin Microspheres. Appl. Biochem. Biotechnol. 2008, 151, 578–586.
  • Cai, X.; Chen, S.; Yang, H.; Wang, W.; Lin, L.; Shen, Y.; Wei, W.; Wei, D.Z. Biodegradation of Waste Greases and Biochemical Properties of a Novel Lipase from Pseudomonas synxantha PS1. Can. J. Microbiol. 2016, 62, 588–599.
  • Affandi, I.E.; Suratman, N.H.; Abdullah, S.; Ahmad, W.A.; Zakaria, Z.A. Degradation of Oil and Grease from High-Strength Industrial Effluents Using Locally Isolated Aerobic Biosurfactant-Producing Bacteria. Int. Biodeterior. Biodegradation 2014, 95, 33–40.
  • Mohsenzadeh, F.; Chehregani Rad, A.; Akbari, M. Evaluation of Oil Removal Efficiency and Enzymatic Activity in Some Fungal Strains for Bioremediation of Petroleum-Polluted Soils. Iran. J. Environ. Health Sci. Eng. 2012, 9, 26–28.
  • Al-Nasrawi, H. Biodegradation of Crude Oil by Fungi Isolated from Gulf of Mexico. J. Bioremed. Biodegrad. 2012, 3, 147–152.
  • Witharana, A.; Manatunge, J.; Ratnayake, N.; Nanayakkara, C.M.; Jayaweera, M. Rapid Degradation of FOG Discharged from Food Industry Wastewater by Lipolytic Fungi as a Bioaugmentation Application. Environ. Technol. 2017, 39, 2062–2072.
  • Trodler, P.; Schmid, R.D.; Pleiss, J. Modeling of Solvent-Dependent Conformational Transitions in Burkholderia cepacia Lipase. BMC Struct. Biol. 2009, 9, 1–13.
  • Ganasen, M.; Yaacob, N.; Rahman, R.N.Z.R.A.; Leow, A.T.C.; Basri, M.; Salleh, A.B.; Ali, M.S.M. Cold-Adapted Organic Solvent Tolerant Alkalophilic Family I. 3 Lipase from an Antarctic Pseudomonas. Intl. J. Biol. Macromol. 2016, 92, 1266–1276.
  • Yang, C.; Wang, F.; Lan, D.; Whiteley, C.; Yang, B.; Wang, Y. Effects of Organic Solvents on Activity and Conformation of Recombinant Candida antarctica Lipase a Produced by Pichia pastoris. Process Biochem. 2012, 47, 533–537.
  • Li, C.; Tan, T.; Zhang, H.; Feng, W. Analysis of the Conformational Stability and Activity of Candida antarctica Lipase B in Organic Solvents Insight from Molecular Dynamics and Quantum Mechanics/Simulations. J. Biol. Chem. 2010, 285, 28434–28441.
  • Shirazi, N.H.; Ranjbar, B.; Khajeh, K.; Moghadam, T.T. Structure–Function Analysis of a New Bacterial Lipase: Effect of Local Structure Reorganization on Lipase Activity. Intl. J. Biol. Macromol. 2013, 54, 180–185.
  • Sinha, R.; Khare, S. Effect of Organic Solvents on the Structure and Activity of Moderately Halophilic Bacillus sp. EMB9 Protease. Extremophiles 2014, 18, 1057–1066.
  • Naeem, A.; Khan, K.A.; Khan, R.H. Characterization of a Partially Folded Intermediate of Papain Induced by Fluorinated Alcohols at Low pH. Arch. Biochem. Biophys. 2004, 432, 79–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.