523
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Sludge: next paradigm for enzyme extraction and energy generation

& ORCID Icon

References

  • National Service Center for Environmental Publications (NSCEP). Solid Waste Disposal Facility Criteria; Final Rule. Federal Register October 9, 1991, 1–144. Part 2. 40 CFR Parts 257 and 258.
  • Moussavi, G.; Farzadkia, M.; Jafarzadeh, N.; Panahi Akhavan, M. Comparing Shoosh Wastewater Treatment Plant Waste Sludge Characteristics with Environmental Standards: Proceeding in Specialist Conference Supported. Moncton New Brunswick Canada. Water Environ. Federation. 2007, 1129–1131.
  • Allievi, L.; Colombi, A.; Calcaterra, E.; Ferrari, A. Inactivation of Fecal Bacteria in Sewage Sludge by Alkaline Treatment. Bioresour Technol. 1994, 49, 25–30. DOI: 10.1016/0960-8524(94)90169-4.
  • Yu, G.; He, P.; Shao, L.; Zhu, Y. Enzyme Extraction by Ultrasound from Sludge Flocs. J Environ Sci (China). 2009, 21, 204–210.
  • Liew, S.M.; Tay, S.T.; Puthucheary, S.D. Enzymatic and Molecular Characterization of Leucine Aminopeptidase of Burkholderia pseudomallei. BMC Microbiol. 2013, 13, 110–117. DOI: 10.1186/1471-2180-13-110.
  • Wahid, M.I.; Bitoon, S.R.; Fukunaga, T.; Yoshikawa, T.; Sakata, T. Comparative Study of Leucine Aminopeptidases from Marine Labyrinthulid and Thraustochytrid Strains. Mem. FacFish. Kagoshima: Kagoshima University (Special Issue). 2008; 26–33.
  • Gu, Y.; Holzer, F.; Walling, L. Overexpression, Purification and Biochemical Characterization of the Wound-induced Leucine Aminopeptidase of Tomato. Eur. J. Biochem. 1999, 263, 726–735. DOI: 10.1046/j.1432-1327.1999.00548.x.
  • Duff, S.M.G.; Sarath, G.; Plaxton, W.C. The Role of Phosphatase in Plant Phosphorus Metabolism. Physiol. Plant. 1994, 90, 791– 800. DOI: 10.1034/j.1399-3054.1994.900424.x.
  • Tabatabai, M.A.; Bremner, J.M. Use of Pnitrophenyl Phosphate for Assay of Soil Phosphatase Activity. Soil Biol. Biochem. 1969, 1, 301–307. DOI: 10.1016/0038-0717(69)90012-1.
  • Barritault, D.; Expert, A.; Guerin, M.F.; Hayes, D. The Use of Acetone Precipitation in the Isolation of Ribosomal Proteins. Eur. J. Biochem. 1976, 3, 131–135. DOI: 10.1111/j.1432-1033.1976.tb10215.x.
  • Goel, R.; Mino, T.; Satoh, H.; Matsuo, T. Enzyme Activities under Anaerobic and Aerobic Conditions in Activated Sludge Sequencing Batch Reactor. Water Res 1998, 32, 2081–2088. DOI: 10.1016/S0043-1354(97)00425-9.
  • Watson, S.D.; Pletschke, B.I. The Effect of Sulfide on α-Glucosidases: Implications for Starch Degradation in Anaerobic Bioreactors. Chemosphere. 2006, 65, 159–164. DOI: 10.1016/j.chemosphere.2006.03.011.
  • Cadoret, A.; Conrad, A.; Block, J.C. Availability of Low and High Molecular Weight Substrates to Extracellular Enzymes in Whole and Dispersed Activated Sludges. Enzyme Microb. Technol. 2002, 31, 179–186.
  • Ayol, A.; Dentel, S. K. Enzymatic Treatment Effects on Dewaterability of Anaerobically Digested biosolids-II: Laboratory Characterizations of Drainability and Filterability. Process Biochem. 2005, 40, 2435–2442. DOI: 10.1016/j.procbio.2004.09.024.
  • Frolund, B.; Griebe, T.; Nielsen, P.H. Enzymatic Activity in the Activated-sludge Floc Matrix. Appl. Microbiol. Biotechnol. 1995, 43, 755–761.
  • Vavilin, V.A.; Rytov, S.V.; Lokshina, L.Y. A Description of Hydrolysis Kinetics in Anaerobic Degradation of Particulate Organic Matter. Bioresour. Technol. 1996, 56, 229–237. DOI: 10.1016/0960-8524(96)00034-X.
  • Cohen, P. The Structure and Regulation of Protein Phosphatases. Annu. Rev. Biochem. 1989, 58, 453–508.
  • Remaley, A.T.; Wilding, P. Macroenzymes: Biochemical Characterization, Clinical Significance, and Laboratory Detection. Clin. Chem. 1989, 35, 2261.
  • Alexandre, H. A History of Mammalian Embryological research. Int. J. Dev. Biol. 2001, 45, 457–467.
  • Jung, J.; Xing, X.H.; Matsumoto, K. Recoverability of Protease Released from Disrupted Excess Sludge and its Potential Application to Enhanced Hydrolysis of Proteins in Wastewater. Biochem. Engg. J. 2002, 10, 67–72. DOI: 10.1016/S1369-703X(01)00163-2.
  • Gessesse, A.; Dueholm, T.; Petersen, S.B.; Nielsen, P.H. Lipase and Protease Extraction from Activated Sludge. Water Research 2003, 37, 3652–3657. DOI: 10.1016/S0043-1354(03)00241-0.
  • Monique, R.; Girbal-Neuhauser, E.; Etienne, P.; Dominique, L. A High Yield Multi-method Extraction Protocol for Protein Quantification in Activated Sludge. Biores Technol. 2008, 99, 7464–7471. DOI: 10.1016/j.biortech.2008.02.025.
  • Maeda, T.; Yoshimura, T.; García-Contreras, R.; Ogawa, H.I. Purification and Characterization of a Serine Protease Secreted by Brevibacillus sp. KH3 for Reducing Waste Activated Sludge and Biofilm Formation. Bioresour. Technol. 2011, 102, 10650–10656. DOI: 10.1016/j.biortech.2011.08.098.
  • Karn, S. K.; Kumar, P.; Xiangliang, P. Extraction of Lipase and Protease and Characterization of Activated Sludge from Pulp and Paper Industry. Prep. Biochem. Biotechnol. 2013, 43, 152–162.
  • Nabarlatz, D.; Stüber, F.; Font, J.; Fortuny, A.; Fabregat, A.; Bengoa, C. Extraction and Purification of Hydrolytic Enzymes from Activated Sludge. Resour. Conserva. Recyc. 2012, 59, 9–13. DOI: 10.1016/j.resconrec.2011.06.017.
  • Nabarlatz, D.; Vondrysova, J.; Jenicek, P.; Stüber, F.; Font, J.; Fortuny, A.; Fabregat, A.; Bengoa, C. Hydrolytic Enzymes in Activated Sludge: extraction of Protease and Lipase by Stirring and Ultrasonication. Ultrason. Sonochem. 2010, 17, 923–931. DOI: 10.1016/j.ultsonch.2010.02.006.
  • Adav, S.; Lee, D.J.; Lai, J.Y. Proteolytic Activity in Stored Aerobic Granular Sludge and Structural Integrity. Biores. Technol. 2009, 100, 68–73. DOI: 10.1016/j.biortech.2008.05.045.
  • Whiteley, C.G.; Heron, P.; Pletschke, B.; Rose, P.D.; Tshivhunge, S.; Van Jaarsveld, F.P.; Whittington-Jones, K. The Enzymology of Sludge Solubilisation Utilising Sulphate Reducing Systems: The Properties of Protease and Phosphatises. Enz. Microb. Tech. 2002, 31, 419–424. DOI: 10.1016/S0141-0229(02)00100-X.
  • Guellil, A.; Boualam, M.; Quiquampoix, H.; Ginestet, P.; Audic, J.M.; Block, J. C. Hydrolysis of Wastewater Colloidal Organic Matter by Extracellular Enzymes Extracted from Activated Sludge Flocs. Water Sci. Technol. 2001, 43, 33–40. DOI: 10.2166/wst.2001.0334.
  • Leal, M.C.M.R.; Freire, D.M.G.; Cammarota, M.C.; Sant’Anna, G.L. Effect of Enzymatic Hydrolysis on Anaerobic Treatment of Dairy Wastewater. Process Biochem. 2006, 41, 1173–1178. DOI: 10.1016/j.procbio.2005.12.014.
  • Watson, S.D.; Akhurst, T.; Whiteley, C.G.; Rose, P.D.; Pletschke, B.I. Primary Sludge Floc Degradation Is Accelerated under Biosulphidogenic Conditions. Enzymological Aspects. Enzyme Microb. Technol. 2004, 34, 595–602. DOI: 10.1016/j.enzmictec.2004.01.004.
  • Nybroe, O.; Jorgensen, P. E.; Henze, M. Enzyme Activities in Waste Water and Activated Sludge. Water Res. 1992, 26, 579–584. DOI: 10.1016/0043-1354(92)90230-2.
  • Higuchi, Y.; Ohashi, A.; Imachi, H.; Harada, H. Hydrolytic Activity of Alpha-amylase in Anaerobic Digested Sludge. Water Sci. Technol. 2005, 52, 259–266. DOI: 10.2166/wst.2005.0526.
  • Gupta, A.; Khare, S. K. Enhanced Production and Characterization of a Solvent Stable Protease from Solvent Tolerant Pseudomonas aeruginosa. Enzyme Microb. Tech. 2007, 42, 11–16. DOI: 10.1016/j.enzmictec.2007.07.019.
  • Poldermans, B. Proteolytic enzymes, In Proteolytic Enzymes in Industry: Production and Applications, Gerhartz, W., Ed.; VCH Publishers: Weinheim, Germany, 1990; 108–123 pp.
  • Usharani, B.; Muthuraj, M. Production and Characterization of Protease Enzyme from Bacillus laterosporus. African J. Microbiol. Res. 2010, 4, 1057–1063.
  • Rao, M.B.; Tanskale, A.M.; Ghatger, M.S.; Deshpande, V.V. Moelcular and Biotechnological Aspects of Microbial Proteases. Microbiol. Mol. Biol. Rev. 1998, 63, 596–635.
  • Brahimi-Horn, M.C.; Guglielmino, M.L.; Sparrow, L.G. Wax Esterase Activity in a Commercially-Available Source of Lipase for C. cylindracea. J. Biotechnol. 1989, 12, 299–306. DOI: 10.1016/0168-1656(89)90049-7.
  • Hoq, M.M.; Yamane, T.; Shimizu, S.; Funada, T.; Ishida, S. Bioreactor for Enzymic Reaction of Fat and Fatty Acid Derivatives. III Continuous Hydrolysis of Olive Oil by Lipase in a Microporous Hydrophobic Membrane Reactor. J. Am. Oil Chem. Soc. 1985, 62, 1016–1021. DOI: 10.1007/BF02935705.
  • Bailey, J.E.; Ollis, D.F. Applied Enzyme Catalysis in Biochemical Engineering Fundamentals. 2nd ed. McGraw-Hill: New York, 1986; 157–227 pp.
  • Watanabe, T.; Mukoyama, K.; Mizuno, K. High Bulk-Density Granular Detergent Containing Alkaline Lipase. Japanese Patent. 1990, 2, 178–397.
  • Aaslyng, D.; Gormsen, E.; Malmos, H. Mechanistic Studies of Proteases and Lipases for the Detergent Industry. J. Chem. Technol. Biotechnol. 2007, 50, 321–330. DOI: 10.1002/jctb.280500304.
  • Sivaramakrishnan, S.; Gangadharan, D.; Madhavan, K.N.; Pandey, A. Solid Culturing of Bacillus amyloliquefaciens for Alpha Amylase Production. Food Technol. Biotechnol. 2006, 44, 269–274.
  • Zaferanloo, B.; Bhattacharjee, S.; Ghorbani, M.M.; Mahon, P.J.; Palombo, E.A. Amylase Production by Preussia Minima, a Fungus of Endophytic Origin: Optimization of Fermentation Conditions and Analysis of Fungal Secretome by LC-MSBMC. Bmc Microbiol. 2014, 14, 55–52-14. DOI: 10.1186/1471-2180-14-55.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. Microbial-Amylases: A Biotechnological Perspective. Process Biochem. 2003, 38, 1599–1616. DOI: 10.1016/S0032-9592(03)00053-0.
  • Pandey, A.; Nigam, P.; Soccol, C.R.; Soccol, V.T.; Singh, D.; Mohan, R. Advances in Microbial Amylases. Biotechnol. Appl. Biochem. 2000, 31, 135–152. DOI: 10.1042/BA19990073.
  • Ramesh, N.; Ramesh, S.; Vennila, G.; Abdul Bari, J.; MageshKumar, P. Energy Production through Organic Fraction of Municipal Solid Waste a Multiple Regression Modelling Approach. Ecotoxicol. Envt. Safety. 2016, 134, 350–357. DOI: 10.1016/j.ecoenv.2015.08.027.
  • Ptasinski, K. J.; Hamelinck, C.; Kerkhof, P. Energy Analysis of Methanol from the Sewage Sludge Process. Energy Convers. Manag. 2002, 43, 1445–1457.
  • Tran-Nguyen, P.L.; Go, A.W.; Ismadji, S.; Ju, Y.H. Transesterification of Activated Sludge in Subcritical Solvent Mixture. Bioresour. Technol. 2015, 197, 30–36. DOI: 10.1016/j.biortech.2015.08.033.
  • Kargbo, D. M. Biodiesel Production from Municipal Sewage Sludges. Energy Fuels. 2010, 24, 2791–2794. DOI: 10.1021/ef1001106.
  • Kwon, E.E.; Kim, S.; Jeon, Y.J.; Yi, H. Biodiesel Production from Sewage Sludge: New Paradigm for Mining Energy from Municipal Hazardous Material. Environ. Sci. Technol. 2012, 46, 10222–10228.
  • Jha, A.K.; Harma, C.; Singh, N.; Ramesh, R.; Purvaja, R.; Gupta, P.K. Green House Gas Emissions from Municipal Solid Waste Management in Indian Mega-Cities, a Case Study of Chennail and Fill Sites. Chemosphere. 2008, 71, 750–758. DOI: 10.1016/j.chemosphere.2007.10.024.
  • Parawira, W. Enzyme Research and Applications in Biotechnological Intensification of Biogas Production. Crit. Rev. Biotechnol. 2011, 32, 172–186.
  • Han, S.K.; Shin, H.S. Bio-hydrogen Production by Anaerobic Fermentation of Food Waste. Int. J. Hydrogen Energy. 2004, 29, 569–577. DOI: 10.1016/j.ijhydene.2003.09.001.
  • Du, Z.; Li, H.; Gu, T. A. State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy. Biotechnol. Adv. 2007, 25, 464–482. DOI: 10.1016/j.biotechadv.2007.05.004.
  • Oh, S.E.; Logan, B.E. Hydrogen and Electricity Production from a Food Processing Wastewater Using Fermentation and Microbial Fuel Cell Technologies. Water Res. 2005, 39, 4673–4682. DOI: 10.1016/j.watres.2005.09.019.
  • Rabaey, K.; Clauwaert, P.; Aelterman, P.; Verstraete, W. Tubular Microbial Fuel Cells for Efficient Electricity Generation. Environ. Sci. Technol. 2005, 39, 8077–8082.
  • Rezaiyan, J.; Cheremisinoff, N.P. Gasification Technologies: A Primer for Engineers and Scientists. 1st ed. CRC Press, 2005; 1–360 pp.
  • Stolarek, P.; Ledakowicz, S. Thermal Processing of Sewage Sludge by Drying, pyrolysis, gasification and Combustion. Water Sci. Technol. 2001, 44, 333–340. DOI: 10.2166/wst.2001.0655.
  • Chen, J.; Liu, S.; Wang, Y.; Wei, H.; Zhou, J. Effect of Different Hydrolytic Enzymes Pre-treatment for Improving the Hydrolysis and Biodegradability of Waste Activated Sludge. Water Sci. Technol. 2017, 2, 592–602. DOI: 10.2166/wst.2018.185.
  • Ni, H.; Fan, X.M.; Guo, H.N.; Liang, J.H.; Li, Q.R.; Yang, L.; Li, H.; Li, H.H. Comprehensive Utilization of Activated Sludge for Preparation of Hydrolytic Enzymes, Polyhydroxyalkanoates and Water-Retaining Organic Fertilizer. Prep. Biochem. Biotech. 2017, 47, 611–618. DOI: 10.1080/10826068.2017.1286599.
  • Odnell, A.; Recktenwald, M.; Stensen, K.; Bengt-Harald, J.; Karlsson, M. Activity, Lifetime and Effect of Hydrolytic Enzymes for Enhanced Biogas Production from Sludge Anaerobic Digestion. Water Res. 2016, 103, 462–471. DOI: 10.1016/j.watres.2016.07.064.
  • Su, R.; Hussain, A.; Guo, J.; Guan, J.; He, Q.; Yan, X.; Li, D.; Guo, Z. Animal Feeds Extracted from Excess Sludge by Enzyme, acid and Base Hydrolysis Processes. ACS Sustainable Chem. Eng. 2015, 3, 2084–2091. DOI: 10.1021/acssuschemeng.5b00346.
  • Karn, S.K.; Kumar, A. Hydrolytic Enzyme Protease in Sludge: Recovery and Its Application. Biotechnol. Bioproc. E. 2015, 20, 652–661. DOI: 10.1007/s12257-015-0161-6.
  • Bianchini, A.; Bonfiglioli, L.; Pellegrini, M.; Saccani, C. Sewage Sludge Drying Process Integration with a Waste-to-energy Power Plant. Waste Manag. 2015, 42, 159–165. DOI: 10.1016/j.wasman.2015.04.020.
  • Yang, Q.; Dussan, K.; Monaghan, R.F.; Zhan, X. Energy Recovery from Thermal Treatment of Dewatered Sludge in Wastewater Treatment Plants. Water Sci. Technol. 2016, 74, 672–680. DOI: 10.2166/wst.2016.251.
  • Meng, F.; Zhao, Q.; Na, X.; Zheng, Z.; Jiang, J.; Wei, L.; Zhang, J. Bioelectricity Generation and Dewatered Sludge Degradation in Microbial Capacitive Desalination Cell. Environ. Sci. Pollut. Res. Int. 2017, 24, 5159–5167. DOI: 10.1007/s11356-016-6853-4.
  • Kannah, R.Y.; Kavitha, S.; Rajesh-Banu, J.; Yeom, I.T.; Johnson, M. Synergetic Effect of Combined Pretreatment for Energy Efficient Biogas Generation. Bioresour. Technol. 2017, 232, 235–246. DOI: 10.1016/j.biortech.2017.02.042.
  • Ribeiro, E.M.; Mambeli Barros, R.; Tiago Filho, G.L.; Dos Santos, I.F.S.; Sampaio, L.C.; Dos Santos, T.V.; da Silva, F.D.; Silva, A.P.M.; de Freitas, J.V.R. Feasibility of Biogas and Energy Generation from Poultry Manure in Brazil. Waste Manag. Res. 2018, 36, 221–235. DOI: 10.1177/0734242X17751846.
  • Kwon, E.E.; Yi, H.; Kwon, H.H. Urban Energy Mining from Sewage Sludge. Chemosphere. 2013, 90, 1508–1513.
  • Xiao, C.; Wu, X.; Liu, T.; Xu, G.; Chi, R. Optimizations of Particle Size and Pulp Density for Solubilization of Rock Phosphate by a Microbial Consortium from Activated Sludge. Prep. Biochem. Biotechnol. 2017, 47, 562–569.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.