218
Views
10
CrossRef citations to date
0
Altmetric
Articles

Overproduction of thermoalkalophilic lipase secreted by Bacillus atrophaeus FSHM2 using UV-induced mutagenesis and statistical optimization of medium components

, , , , &

References

  • Bhosale, H.; Uzma, S.; Bismile, P. Optimization of Lipase Production by Thermo-alkalophilic Bacillus sp. 8C. Res. J. Microbiol. 2015, 10, 528–532.
  • Papagora, C.; Roukas, T.; Kotzekidou, P. Optimization of Extracellular Lipase Production by Debaryomyces hansenii Isolates from Dry-salted Olives Using Response Surface Methodology. Food Bioprod. proc. 2013, 91, 413–420.
  • Khoobi, M.; Khalilvand‐Sedagheh, M.; Ramazani, A.; Asadgol, Z.; Forootanfar, H.; Faramarzi, M.A. Synthesis of Polyethyleneimine (PEI) and β‐Cyclodextrin Grafted PEI Nanocomposites with Magnetic Cores for Lipase Immobilization and Esterification. J. Chem. Technol. Biotechnol. 2016, 91, 375–384.
  • Mathpati, A.C.; Kalghatgi, S.G.; Mathpati, C.S.; Bhanage, B.M. Immobilized Lipase Catalyzed Synthesis of n-amyl Acetate: Parameter Optimization, Heterogeneous Kinetics, Continuous Flow Operation and Reactor Modeling. J. Chem. Technol. Biotechnol. 2018, 93, 2906–2916.
  • Heidarizadeh, M.; Doustkhah, E.; Rostamnia, S.; Rezaei, P.F.; Harzevili, F.D.; Zeynizadeh, B. Dithiocarbamate to Modify Magnetic Graphene Oxide Nanocomposite (Fe3O4-GO): A New Strategy for Covalent Enzyme (lipase) immobilization to Fabrication a New Nanobiocatalyst for Enzymatic Hydrolysis of PNPD. Int. J. Biol. Macromol. 2017, 101, 696–702.
  • Sarmah, N.; Revathi, D.; Sheelu, G.; Yamuna Rani, K.; Sridhar, S.; Mehtab, V.; Sumana, C. Recent Advances on Sources and Industrial Applications of Lipases. Biotechnol. Prog. 2018, 34, 5–28.
  • Carvalho, A.C.L.d-M.; Fonseca, T.d-S.; Mattos, M.C-d.; Oliveira, M.d-C.F-d.; Lemos, T.L.G-d.; Molinari, F.; Romano, D.; Serra, I. Recent Advances in Lipase-mediated Preparation of Pharmaceuticals and Their Intermediates. Ijms. 2015, 16, 29682–29716.
  • Salihu, A.; Alam, M.Z. Solvent Tolerant Lipases: A Review. Process Biochem. 2015, 50, 86–96.
  • Daoud, L.; Kamoun, J.; Ali, M.B.; Jallouli, R.; Bradai, R.; Mechichi, T.; Gargouri, Y.; Ali, Y.B.; Aloulou, A. Purification and Biochemical Characterization of a Halotolerant Staphylococcus sp. Extracellular Lipase. Int. J. Biol. Macromol. 2013, 57, 232–237.
  • Zhang, Y.; Ji, F.; Wang, J.; Pu, Z.; Jiang, B.; Bao, Y. Purification and Characterization of a Novel Organic Solvent-Tolerant and Cold-Adapted Lipase from Psychrobacter sp. ZY124. Extremophiles 2018, 22, 287–300.
  • Yao, C.; Cao, Y.; Wu, S.; Li, S.; He, B. An Organic Solvent and Thermally Stable Lipase from Burkholderia ambifaria YCJ01: Purification, Characteristics and Application for Chiral Resolution of Mandelic Acid. J. Mol. Catal., B Enzym. 2013, 85, 105–110.
  • Nyari, N.L.D.; Zabot, G.L.; Zamadei, R.; Paluzzi, A.R.; Tres, M.V.; Zeni, J.; Venquiaruto, L.D.; Dallago, R.M. Activation of Candida antarctica Lipase B in Pressurized Fluids for the Synthesis of Esters. J. Chem. Technol. Biotechnol. 2018, 93, 897–908.
  • Boran, R.; Ugur, A. Partial Purification and Characterization of the Organic Solvent-tolerant Lipase Produced by Pseudomonas fluorescens RB02-3 Isolated from Milk. Prep. Biochem. Biotechnol. 2010, 40, 229–241.
  • Samaei-Nouroozi, A.; Rezaei, S.; Khoshnevis, N.; Doosti, M.; Hajihoseini, R.; Khoshayand, M.R.; Faramarzi, M.A. Medium-Based Optimization of an Organic Solvent-Tolerant Extracellular Lipase from the Isolated Halophilic Alkalibacillus salilacus. Extremophiles 2015, 19, 933–947.
  • Uttatree, S.; Winayanuwattikun, P.; Charoenpanich, J. Isolation and Characterization of a Novel Thermophilic-Organic Solvent Stable Lipase from Acinetobacter baylyi. Appl. Biochem. Biotechnol. 2010, 162, 1362–1376.
  • Zheng, R.C.; Ruan, L.T.; Ma, H.Y.; Tang, X.L.; Zheng, Y.G. Enhanced Activity of Thermomyces Lanuginosus Lipase by Site-Saturation Mutagenesis for Efficient Biosynthesis of Chiral Intermediate of Pregabalin. Biochem. Eng. J. 2016, 113, 12–18.
  • Soflaei, S.; Dalimi, A.; Abdoli, A.; Kamali, M.; Nasiri, V.; Shakibaie, M; Tat, M. Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. Comp. Clin. Pathol. 2014, 23, 15–20.
  • Pardakhty, A.; Shakibaie, M.; Daneshvar, H.; Khamesipour, A.; Mohammadi-Khorsand, T.; Forootanfar, H. Preparation and evaluation of niosomes containing autoclaved Leishmania major: a preliminary study. J. Microencap. 2012, 29, 219–224.
  • Chandra, M.; Kalra, A.; Sangwan, N.S.; Gaurav, S.S.; Darokar, M.P.; Sangwan, R.S. Development of a Mutant of Trichoderma Citrinoviride for Enhanced Production of Cellulases. Bioresour. Technol. 2009, 100, 1659–1662.
  • Shakibaie, M.; Ameri, A.; Ghazanfarian, R.; Adeli-Sardou, M.; Amirpour-Rostami, S.; Torkzadeh-Mahani, M.; Imani, M.; Forootanfar, H. Statistical Optimization of Kojic Acid Production by a UV-induced Mutant Strain of Aspergillus terreus. Braz. J. Microbiol. 2018, 49, 865–871.
  • Toscano, L.; Gochev, V.; Montero, G.; Stoytcheva, M. Enhanced Production of Extracellular Lipase by Novel Mutant Strain of Aspergillus niger. Biotechnol. Biotechnol. Equip. 2011, 25, 2243–2247.
  • Liu, B.; Xue, Q.; Tang, Y.; Cao, J.; Guengerich, F.P.; Zhang, H. Mechanisms of Mutagenesis: DNA Replication in the Presence of DNA Damage. Mutat. Res. Rev. Mutat. Res. 2016, 768, 53–67.
  • Bisht, D.; Yadav, S.K.; Darmwal, N.S. Enhanced Production of Extracellular Alkaline Lipase by an Improved Strain of Pseudomonas aeruginosa MTCC 10,055. Am. J. Appl. Sci. 2012, 9, 158–167.
  • Raju, E.V.N.; Divakar, G. Bacillus Cereus GD 55 Strain Improvement by Physical and Chemical Mutagenesis for Enhanced Production of Fibrinolytic Protease. Int. J. Pharm. Sci. Res. 2013, 4, 81–93.
  • Chen, P.T.; Chen, Y.-C.; Lin, Y.-Y.; Su, H.-H. Strategy for Efficient Production of Recombinant Staphylococcus epidermidis Lipase in Bacillus subtilis. Biochem. Eng. J. 2015, 103, 152–157.
  • Wang, D.; Xu, Y.; Shan, T. Effects of Oils and Oil-Related Substrates on the Synthetic Activity of Membrane-Bound Lipase from Rhizopus Chinensis and Optimization of the Lipase Fermentation Media. Biochem. Eng. J. 2008, 41, 30–37.
  • Kai, W.; Peisheng, Y. Optimization of Lipase Production from a Novel Strain Thalassospira Permensis M35-15 Using Response Surface Methodology. Bioengineered 2016, 7, 298–303.
  • Mokhtari-Hosseini, Z.B.; Hatamian-Zarmi, A.; Mohammadnejad, J.; Ebrahimi-Hosseinzadeh, B. Chitin and Chitosan Biopolymer Production from the Iranian Medicinal Fungus Ganoderma Lucidum: Optimization and Characterization. Prep. Biochem. Biotechnol. [In press]. DOI: 10.1080/10826068.2018.1487847
  • Hasan-Beikdashti, M.; Forootanfar, H.; Safiarian, M.; Ameri, A.; Ghahremani, M.; Khoshayand, M.; Faramarzi, M. Optimization of Culture Conditions for Production of Lipase by a Newly Isolated Bacterium Stenotrophomonas maltophilia. J. Taiwan Inst. Chem. Eng. 2012, 43, 670–677.
  • Vasiee, A.; Behbahani, B.A.; Yazdi, F.T.; Moradi, S. Optimization of the Production Conditions of the Lipase Produced by Bacillus cereus from Rice Flour through Plackett–Burman Design (PBD) and Response Surface Methodology (RSM). Microb. Pathog. 2016, 101, 36–43.
  • Sahoo, R.K.; Kumar, M.; Mohanty, S.; Sawyer, M.; Rahman, P.; Sukla, L.B.; Subudhi, E. Statistical Optimization for Lipase Production from Solid Waste of Vegetable Oil Industry. Prep. Biochem. Biotechnol. 2018, 48, 321–326.
  • Ameri, A.; Shakibaie, M.; Faramarzi, M.A.; Ameri, A.; Amirpour-Rostami, S.; Rahimi, H.R.; Forootanfar, H. Thermoalkalophilic Lipase from an Extremely Halophilic Bacterial Strain Bacillus atrophaeus FSHM2: purification, biochemical Characterization and Application. Biocatal. Biotransf. 2017, 35, 151–160.
  • Anderson, M.J.; Whitcomb, P.J. DOE Simplified: Practical Tools for Effective Experimentation, Productivity press, 2016.
  • Anderson, M.J.; Whitcomb, P.J. RSM Simplified: optimizing Processes Using Response Surface Methods for Design of Experiments, Productivity press, 2016.
  • Zhao, L.-L.; Chen, X.-X.; Xu, J.-H. Strain Improvement of Serratia marcescens ECU1010 and Medium Cost Reduction for Economic Production of Lipase. World J. Microbiol. Biotechnol. 2010, 26, 537–543.
  • Bora, L.; Bora, M. Optimization of Extracellular Thermophilic Highly Alkaline Lipase from Thermophilic Bacillus sp Isolated from Hotspring of Arunachal Pradesh, india. Braz. J. Microbiol. 2012, 43, 30–42.
  • Abdel-Fattah, Y.R.; Soliman, N.A.; Yousef, S.M.; El-Helow, E.R. Application of Experimental Designs to Optimize Medium Composition for Production of Thermostable Lipase/Esterase by Geobacillus thermodenitrificans AZ1. J. Genet. Eng. Biotechnol. 2012, 10, 193–200.
  • Rajendran, A.; Palanisamy, A.; Thangavelu, V. Evaluation of Medium Components by Plackett–Burman Statistical Design for Lipase Production by Candida Rugosa and Kinetic Modeling. Chin. J. Biotechnol. 2008, 24, 436–444.
  • Liu, C.-H.; Chen, C.-Y.; Wang, Y.-W.; Chang, J.-S. Fermentation Strategies for the Production of Lipase by an Indigenous Isolate Burkholderia sp. C20. Biochem. Eng. J. 2011, 58, 96–102.
  • Tommaso, G.; de Moraes, B.S.; Macedo, G.C.; Silva, G.S.; Kamimura, E.S. Production of Lipase from Candida Rugosa Using Cheese Whey through Experimental Design and Surface Response Methodology. Food Bioprocess Technol. 2011, 4, 1473–1481.
  • Tanyol, M.; Uslu, G.; Yönten, V. Optimization of Lipase Production on Agro-industrial Residue Medium by Pseudomonas fluorescens (NRLL B-2641) using Response Surface Methodology. Biotechnol. Biotechnol. Equip. 2015, 29, 64–71.
  • Eltaweel, M.A.; Rahman, R.; Salleh, A.B.; Basri, M. An Organic Solvent-stable Lipase from Bacillus sp. strain 42. Ann. Microbiol. 2005, 55, 187.
  • Dutta, S.; Ray, L. Production and Characterization of an Alkaline Thermostable Crude Lipase from an Isolated Strain of Bacillus cereus C 7. Appl. Biochem. Biotechnol. 2009, 159, 142–154.
  • Sathishkumar, R.; Ananthan, G.; Iyappan, K.; Stalin, C. A Statistical Approach for Optimization of Alkaline Lipase Production by Ascidian Associated—Halobacillus trueperi RSK CAS9. Biotechnol. Rep. 2015, 8, 64–71.
  • Yele, V.U.; Desai, K. A New Thermostable and Organic Solvent-Tolerant Lipase from Staphylococcus warneri; Optimization of Media and Production Conditions Using Statistical Methods. Appl. Biochem. Biotechnol. 2015, 175, 855–869.
  • Mukesh Kumar, D.; Rejitha, R.; Devika, S.; Balakumaran, M.; Rebecca, A.I.N.; Kalaichelvan, P. Production, Optimization and Purification of Lipase from Bacillus sp. MPTK 912 Isolated from Oil Mill Effluent. Adv. Appl. Sci. Res. 2012, 3, 930–938.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.