223
Views
2
CrossRef citations to date
0
Altmetric
Articles

Lapachol biotransformation by filamentous fungi yields bioactive quinone derivatives and lapachol-stimulated secondary metabolites

, , , &

References

  • Alvarez-Fitz, P.; Alvarez, L.; Marquina, S.; Luna-Herrera, J.; Navarro-García, V.M. Enzymatic Reduction of 9-Methoxytariacuripyrone by Saccharomyces Cerevisiae and Its Antimycobacterial Activity. Molecules 2012, 17, 8464–8470. DOI: 10.3390/molecules17078464.
  • Liu, J.-H.; Yu, B.-Y. Biotransformation of Bioactive Natural Products for Pharmaceutical Lead Compounds. Coc. 2010, 14, 1400–1406. DOI: 10.2174/138527210791616786.
  • Alcántara, A.R. Biotransformations in Drug Synthesis : A Green and Powerful Tool for Medicinal Chemistry. J. Med. Chem. Drug Des. 2017, 1, 1–7.
  • Shah, S.A.A.; Tan, H.L.; Sultan, S.; Faridz, M. A. B. M.; Shah, M.A.B.M.; Nurfazilah, S.; Hussain, M. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients. Ijms. 2014, 15, 12027–12060. DOI: 10.3390/ijms150712027.
  • Dvorakova, M.; Valterova, I.; Saman, D.; Vanek, T. Biotransformation of (1S)-2-Carene and (1S)-3-Carene by Picea abies Suspension Culture. Molecules 2011, 16, 10541–10555. DOI: 10.3390/molecules161210541.
  • Wakefield, J.; Hassan, H.M.; Jaspars, M.; Ebel, R.; Rateb, M.E. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-Cultivation. Front. Microbiol. 2017, 8, 1284.
  • Paludo, C.R.; da Silva-Junior, E.A.; de Oliveira Silva, E.; Vessecchi, R.; Peporine Lopes, N.; Tallarico Pupo, M.; da Silva Emery, F.; dos Santos Gonçalves, N.; Alves dos Santos, R.; Jacometti Cardoso Furtado, N.A. Inactivation of β-Lapachone Cytotoxicity by Filamentous Fungi That Mimic the Human Blood Metabolism. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 213–220. DOI: 10.1007/s13318-016-0337-2.
  • Hussain, H.; Green, I.R. Analogs: A Journey of Two Decades of Patent Research (1997–2016). Expert Opin. Ther. Pat. 2017, 27, 1111–1121. DOI: 10.1080/13543776.2017.1339792.
  • Silva, E.O.; de Carvalho, T.C.; Parshikov, I.A.; dos Santos, R.A.; Emery, F.S.; Furtado, N. A. J. C. Cytotoxicity of Lapachol Metabolites Produced by Probiotics. Lett. Appl. Microbiol. 2014, 59, 108–114. DOI: 10.1111/lam.12251.
  • Sun, J.S.; Geiser, A.H.; Frydman, B. A Preparative Synthesis of Lapachol and Related Naphthoquinones. Tetrahedron Lett. 1998, 39, 8221–8224. DOI: 10.1016/S0040-4039(98)01880-2.
  • Otten, S.L.; Rosazza, J.P. Microbial Transformations of Natural Antitumor Agents. 17. Conversions of Lapachol by Cunninghamella echinulata. J. Nat. Prod. 1981, 44, 562–568. DOI: 10.1021/np50017a009.
  • Niehues, M.; Barros, V.P.; Emery, F.D.S.; Dias-Baruffi, M.; Assis, M.D.D.; Lopes, N.P. Biomimetic in Vitro Oxidation of Lapachol: A Model to Predict and Analyse the in Vivo Phase I Metabolism of Bioactive Compounds. Eur. J. Med. Chem. 2012, 54, 804–812. DOI: 10.1016/j.ejmech.2012.06.042.
  • De Carvalho, T.C.; Polizeli, A.M.; Turatti, I.C.C.; Severiano, M.E.; De Carvalho, C.E.; Ambrósio, S.R.; Crotti, A.E.M.; De Figueiredo, U.S.; Vieira, P.C.; Furtado, N. A. J. C. Screening of Filamentous Fungi to Identify Biocatalysts for Lupeol Biotransformation. Molecules 2010, 15, 6140–6151. DOI: 10.3390/molecules15096140.
  • Toniazzo, G.; Lerin, L.; De Oliveira, D.; Dariva, C.; Cansian, R.L.; Padilha, F.F.; Antunes, O.A.C. Microorganism Screening for Limonene Bioconversion and Correlation with RAPD Markers. Abab. 2006, 132, 1023–1033. DOI: 10.1385/ABAB:132:1:1023.
  • Eyong, K.O.; Puppala, M.; Kumar, P.S.; Lamshöft, M.; Folefoc, G.N.; Spiteller, M.; Baskaran, S. A Mechanistic Study on the Hooker Oxidation: Synthesis of Novel Indane Carboxylic Acid Derivatives from Lapachol. Org. Biomol. Chem. 2013, 11, 459–468. DOI: 10.1039/C2OB26737C.
  • Melo, I.S.; Santos, S.N.; Rosa, L.H.; Parma, M.M.; Silva, L.J.; Queiroz, S.C.N.; Pellizari, V.H. Isolation and Biological Activities of an Endophytic Mortierella alpina Strain from the Antarctic Moss Schistidium antarctici. Extremophiles 2014, 18, 15–23. DOI: 10.1007/s00792-013-0588-7.
  • Ser, H.L.; Palanisamy, U.D.; Yin, W.F.; Abd Malek, S.N.; Chan, K.G.; Goh, B.H.; Lee, L.H. Presence of Antioxidative Agent, Pyrrolo[1,2-a]Pyrazine-1,4-Dione, Hexahydro- in Newly Isolated Streptomyces mangrovisoli sp. nov. Front. Microbiol. 2015, 6, 854.
  • Padmavathi, A.R.; Abinaya, B.; Pandian, S.K. 2,4-Bis(1,1-Dimethylethyl) of Marine Bacterial Origin Inhibits Quorum Sensing Mediated Biofilm Formation in the Uropathogen Serratia Marcescens. Biofouling 2014, 30, 1111–1122. DOI: 10.1080/08927014.2014.972386.
  • Goulart, M.O.F.; Falkowski, P.; Ossowski, T.; Liwo, A. Electrochemical Study of Oxygen Interaction with Lapachol and Its Radical Anions. Bioelectrochemistry 2003, 59, 85–87. DOI: 10.1016/S1567-5394(03)00005-7.
  • Chavez, R.; Fierro, F.; Garcia-Rico, R.O.; Vaca, I. Filamentous Fungi from Extreme Environments as a Promising Source of Novel Bioactive Secondary Metabolites. Front. Microbiol. 2015, 6, 903.
  • VanderMolen, K.M.; Raja, H.A.; El-Elimat, T.; Oberlies, N.H. Evaluation of Culture Media for the Production of Secondary Metabolites in a Natural Products Screening Program. AMB Express 2013, 3, 71. DOI: 10.1186/2191-0855-3-71.
  • Yu, J.-H.; Keller, N. Regulation of Secondary Metabolism in Filamentous Fungi. Annu. Rev. Phytopathol. 2005, 43, 437–458. DOI: 10.1146/annurev.phyto.43.040204.140214.
  • Frisvad, J.C. Media and Growth Conditions for Induction of Secondary Metabolite Production. Methods Mol. Biol 2012, 944, 47–58.
  • Carneiro, P.F.; Pinto, M. d C. F. R.; Coelho, T.S.; Cavalcanti, B.C.; Pessoa, C.; de Simone, C.A.; Nunes, I.K.C.; de Oliveira, N.M.; de Almeida, R.G.; Pinto, A.V.; et al. Quinonoid and Phenazine Compounds: Synthesis and Evaluation against H37Rv, Rifampicin and Isoniazid-Resistance Strains of Mycobacterium tuberculosis. Eur. J. Med. Chem. 2011, 46, 4521–4529. DOI: 10.1016/j.ejmech.2011.07.026.
  • Da Silva, E.N.; Jardim, G.A.M.; Menna-Barreto, R.F.S.; De Castro, S.L. Anti-Trypanosoma cruzi Compounds: Our Contribution for the Evaluation and Insights on the Mode of Action of Naphthoquinones and Derivatives. J. Braz. Chem. Soc. 2014, 25, 1780–1798.
  • Guimarães, T.T.; Pinto, M. d C. F. R.; Lanza, J.S.; Melo, M.N.; do Monte-Neto, R.L.; de Melo, I.M.M.; Diogo, E.B.T.; Ferreira, V.F.; Camara, C.A.; Valença, W.O.; et al. Potent Naphthoquinones against Antimony-Sensitive and -Resistant Leishmania Parasites: Synthesis of Novel α- and nor-α-Lapachone-Based 1,2,3-Triazoles by Copper-Catalyzed Azide-Alkyne Cycloaddition. Eur. J. Med. Chem. 2013, 63, 523–530. DOI: 10.1016/j.ejmech.2013.02.038.
  • Dos Santos, A.F.; Ferraz, P.A.L.; De Abreu, F.C.; Chiari, E.; Goulart, M.O.F.; Sant’Ana, A.E.G. Molluscicidal and Trypanocidal Activities of Lapachol Derivatives. Planta Med. 2001, 67, 92–93. DOI: 10.1055/s-2001-10877.
  • Lima, N.M.F.; Correia, C.S.; Leon, L.L.; Machado, G.M.C.; De Fátima Madeira, M.; Santana, A.E.G.; Goulart, M.O.F. Antileishmanial Activity of Lapachol Analogues. Mem. Inst. Oswaldo Cruz 2004, 99, 757–761.
  • Siddharth, S.; Vittal, R.; Siddharth, S.; Vittal, R.R. Evaluation of Antimicrobial, Enzyme Inhibitory, Antioxidant and Cytotoxic Activities of Partially Purified Volatile Metabolites of Marine Streptomyces sp. S2A. Microorganisms 2018, 6, 72. DOI: 10.3390/microorganisms6030072.
  • Yoon, M.-A.; Jeong, T.-S.; Park, D.-S.; Xu, M.-Z.; Oh, H.-W.; Song, K.-B.; Lee, W.S.; Park, H.-Y. Antioxidant Effects of Quinoline Alkaloids and 2,4-Di-Tert-Butylphenol Isolated from Scolopendra subspinipes. Biol. Pharm. Bull. 2006, 29, 735–739. DOI: 10.1248/bpb.29.735.
  • Malek, S.N.A.; Wahab, N.A.; Yaacob, H.; Shin, S.K.; Lai, H.S.; Serm, L.G.; Rahman, S. N. S. A. Cytotoxic Activity of Pereskia bleo (Cactaceae) against Selected Human Cell Lines. Int. J. Cancer Res. 2008, 4, 20–27. DOI: 10.3923/ijcr.2008.20.27.
  • Ajayi, G.O.; Olagunju, J.A.; Ademuyiwa, O.; Martins, O.C. Gas Chromatography-Mass Spectrometry Analysis and Phytochemical Screening of Ethanolic Root Extract of Plumbago Zeylanica. Linn. J. Med. Plants Res. 2011, 5, 1756–1761.
  • Sang, M.K.; Kim, J.D.; Kim, B.S.; Kim, K.D. Root Treatment with Rhizobacteria Antagonistic to Phytophthora Blight Affects Anthracnose Occurrence, Ripening, and Yield of Pepper Fruit in the Plastic House and Field. Phytopathology 2011, 101, 666–678. DOI: 10.1094/PHYTO-08-10-0224.
  • Sang, M.K.; Kim, K.D. The Volatile-Producing Flavobacterium johnsoniae Strain GSE09 Shows Biocontrol Activity against Phytophthora Capsici in Pepper. J. Appl. Microbiol. 2012, 113, 383–398. DOI: 10.1111/j.1365-2672.2012.05330.x.
  • Sathuvan, M.; Vignesh, A.; Thangam, R.; Palani, P.; Rengasamy, R.; Murugesan, K. In Vitro Antioxidant and Anticancer Potential of Bark of Costus pictus D.DON. Asian Pac. J. Trop. Biomed. 2012, 2, S741–S749. DOI: 10.1016/S2221-1691(12)60307-4.
  • Choi, S.J.; Kim, J.K.; Kim, H.K.; Harris, K.; Kim, C.-J.; Park, G.G.; Park, C.-S.; Shin, D.-H. 2,4-Di-Tert-Butylphenol from Sweet Potato Protects against Oxidative Stress in PC12 Cells and in Mice. J. Med. Food 2013, 16, 977–983. DOI: 10.1089/jmf.2012.2739.
  • Dharni, S.; Sanchita, S.; Maurya, A.; Samad, A.; Srivastava, S.K.; Sharma, A.; Patra, D.D. Purification, Characterization, and in Vitro Activity of 2,4-Di-Tert-Butylphenol from Pseudomonas monteilii Psf84: Conformational and Molecular Docking Studies. J. Agric. Food Chem. 2014, 62, 6138–6146.
  • Rangel-Sánchez, G.; Castro-Mercado, E.; García-Pineda, E. Avocado Roots Treated with Salicylic Acid Produce Phenol-2,4-Bis (1,1-Dimethylethyl), a Compound with Antifungal Activity. J. Plant Physiol. 2014, 171, 189–198. DOI: 10.1016/j.jplph.2013.07.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.