276
Views
10
CrossRef citations to date
0
Altmetric
Articles

Purification and characterization of a novel β-glucosidase from Aspergillus flavus and its application in saccharification of soybean meal

, , , , &

References

  • Bajpai, S.; Sharma, A.; Gupta, M.-N. Removal and Recovery of Antinutritional Factors from Soybean Flour. Food. Chem. 2005, 89, 497–501.
  • Fischer, M.; Kofod, L.-V.; Schols, H.-A.; Piersma, S.-P.; Gruppen, H.; Voragen, A. G. J. Enzymatic Extractability of Soybean Meal Proteins and Carbohydrates: Heat and Humidity Effects. J. Agric. Food Chem. 2001, 49, 4463–4469.
  • Gitoee, A.; Janmohammadi, H.; Taghizadeh, A.; Rafat, S.-A. Effects of a Multi-Enzyme on Performance and Carcass Characteristics of Broiler Chickens Fed Corn-Soybean Meal Basal Diets with Different Metabolizable Energy Levels. J. Appl. Anim. Res. 2015, 43, 295–302.
  • Chen, Z.; Zaky, A.-A.; Liu, Y.-L.; Chen, Y.-Y.; Liu, L.; Li, S.-T.; Jia, Y.-M. Purification and Characterization of a New Xylanase with Excellent Stability from Aspergillus Flavus and Its Application in Hydrolyzing Pretreated Corncobs. Protein. Expres. Purif. 2019, 154, 91–97.
  • Cao, Y.-N.; Wang, Y.-R.; Meng, K.; Bai, Y.-G.; Shi, P.-J.; Luo, H.-Y.; Yang, P.-L.; Zhou, Z.-G.; Zhang, Z.-F.; Yao, B. A Novel Protease-Resistant α-Galactosidase with High Hydrolytic Activity from Gibberella sp. F75: Gene Cloning, Expression, and Enzymatic Characterization. Appl. Microbiol. Biotechnol. 2009, 83, 875–884
  • Alarid-García, C.; Escamilla-Silva, E.-M. Comparative Study of the Production of Extracellular β-Glucosidase by Four Different Strains of Aspergillus Using Submerged Fermentation. Prep. Biochem. Biotech 2017, 47, 1
  • Mallek-Fakhfakh, H.; Fakhfakh, J.; Masmoudi, N.; Rezgui, F.; Gargouri, A.; Belghith, H. Agricultural as Substrates for β-Glucosidase Production by Talaromyces thermophilus: Role of These Enzymes in Enhancing Waste Paper Saccharification. Prep. Biochem. Biotech. 2017, 47, 414–423.
  • Guo, B.-Y.; Amano, Y.; Nozaki, K. Improvements in Glucose Sensitivity and Stability of Trichoderma reesei β-Glucosidase Using Site-Directed Mutagenesis. PLoS One 2016, 11, e0147301.
  • Wang, F.; Wu, J.; Chen, S. Preparation of Gentiooligosaccharides Using Trichoderma viride β-Glucosidase. Food. Chem. 2018, 248, 340–345.
  • Yao, G.-S.; Wu, R.-M.; Kan, Q.-B.; Gao, L.-W.; Liu, M.; Yang, P.; Du, J.; Y. -B. Production Of, Q. A High-Efficiency Cellulose Complex via β-Glucosidase Engineering in Penicillium oxalicum. Biotechnol. Biofuels 2016, 9, 1–11.
  • Zhang, W.-M.; Kang, L.-Q.; Yang, M.-M.; Zhou, Y.-J.; Wang, J.; Liu, Z.-H.; Yuan, S. Purification, Characterization, and Function Analysis of an Extracellular β-Glucosidase from Elongating Stipe Cell Walls in Coprinopsis cinerea. FEMS Microbiol. Lett. 2016, 363, fnw112.
  • Xia, Y.; Yang, L.-R.; Xia, L.-M. High-Level Production of a Fungal β-Glucosidase with Application Potentials in the Cost-Effective Production of Trichoderma reesei Cellulose. Process. Biochem. 2018, 70, 55–60.
  • Yang, S.-Q.; Hua, C.-W.; Yan, Q.-J.; Li, Y.-N.; Jiang, Z.-Q. Biochemical Properties of a Novel Glycoside Hydrolase Family 1 β-Glucosidase (PtBglu1) from Paecilomyces thermophila Expressed in Pichia pastoris. Carbohyd. Polym. 2013, 92, 784–791.
  • Baba, Y.; Sumitani, J.; Tanaka, K.; Tani, S.; Kawaguchi, T. Site-Saturation Mutagenesis for β-Glucosidase 1 from Aspergillus Aculeatus to Accelerate the Saccharification of Alkaline-Pretreated Bagasse. Appl. Microbiol. Biotechnol. 2016, 100, 10495–10507.
  • Rodrigues, P. D. O.; Santos, B. V. D.; Costa, L.; Henrique, M.-A.; Pasquini, D.; Baffi, M.-A. Xylanase and β-Glucosidase Production by Aspergillus fumigatus Using Commercial and Lignocellulosic Substrates Submitted to Chemical Pre-Treatments. Ind. Crop. Prod. 2017, 95, 453–459.
  • Xia, W.; Bai, Y.-G.; Cui, Y.; Xu, X.-X.; Qian, L.-C.; Shi, P.-J.; Zhang, W.; Luo, H.-Y.; Zhan, X.-a.; Yao, B. Functional Diversity of Family 3 β-Glucosidases from Thermophilic Cellulolytic Fungus Humicola insolens Y1. Sci. Rep. 2016, 2, 27062.
  • Yang, S.-Q.; Jiang, Z.-Q.; Yan, Q.-J.; Zhu, H.-F. Characterization of a Thermostable Extracellular β-Glucosidase with Activities of Exoglucanase and Transglycosylation from Paecilomyces thermophila. J. Agric. Food Chem. 2008, 56, 602–608.
  • Boudabbous, M.; Hmad, I.-B.; Saibi, W.; Mssawara, M.; Belghith, H.; Gargouri, A. Trans-Glycosylation Capacity of a Highly Glycosylated Multi-Specific β-Glucosidase from Fusarium solani. Bioprocess. Biosyst. Eng. 2017, 40, 1–13.
  • Satheesh Kumar, G.; Chandrasekhar, G.; Subhosh Chandra, M.; Siva Prasad, B.-V.; Suresh Yadav, P.; Naresh Kumar, C. V. M.; Rajasekhar, R. Thermostable β-D-Glucosidase from Aspergillus flavus: Production, Purification and Characterization. Int. J. Cli. Bio. Sci. 2016, 1, 1–15.
  • Bhushan, B.; Pal, A.; Kumar, S.; Jain, V. Biochemical Characterization and Kinetic Comparison of Encapsulated Haze Removing Acidophilic Xylanase with Partially Purified Free Xylanase Isolated from Aspergillus flavus MTCC 9390. J. Food Sci. Technol. 2015, 52, 191–200.
  • Gao, G.; Mao, R.-Q.; Xiao, Y.; Zhou, J.; Liu, Y.-H.; Li, G. Efficient Yeast Cell-Surface Display of an Endoglucanase of Aspergillus flavus and Functional Characterization of the Whole-Cell Enzyme. World. J. Microbiol. Biotechnol. 2017, 33, 114.
  • Karim, K. M. R.; Husaini, A.; Sing, N.-N.; Sinang, F.-M.; Roslan, H.-A.; Hussain, H. Purification of an Alpha Amylase from Aspergillus flavus NSH9 and Molecular Characterization of Its Nucleotide Gene Sequence. 3 Biotech. 2018, 8, 204.
  • Lowry, O.-H.; Rosebrough, N.-J.; Farr, A.-L.; Randall, R.-J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275.
  • Laemmli, U.-K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 277, 680–685 680a0.
  • Miller, G.-L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugars. Anal. Chem. 1959, 31, 426–428.
  • Sørensen, A.; Ahring, B.-K.; Lübeck, M.; Ubhayasekera, W.; Bruno, K.-S.; Culley, D.-E.; Lübeck, P.-S. Indentifying and Characterizing the Most Significant β-Glucosidase of the Novel Species Aspergillus saccharolyticus. Can. J. Microbiol. 2012, 58, 1035–1046.
  • Guo, G.-H.; Zheng, Z.-M.; Liu, H.; Wang, L.; Diao, J.-S.; Wang, P.; Zhao, G. H. Purification and Characterization of a β-Glucosidase from Aspergillus niger and Its Application in the Hydrolysis of Geniposide to Genipin. J. Microbiol. Biotechnol. 2014, 24, 788–794.
  • Narasimha, G.; Sridevi, A.; Ramanjaneyulu, G.; Reddy, B.-R. Purification and Characterization of β-Glucosidase from Aspergillus niger. Int. J. Food. Prop. 2016, 19, 652–661.
  • Treebupachatsakul, T.; Nakazawa, H.; Shinbo, H.; Fujikawa, H.; Nagaiwa, A.; Ochiai, N.; Kawaguchi, T.; Nikaido, M.; Totani, K.; Shioya, K. Heterologously Expressed Aspergillums Aculeatus β-Glucosidase in Saccharomyces cerevisiae Is a Cost-Effective Alternative to Commercial Supplementation of β-Glucosidase in Industrial Ethanol Producing Using Trichoderma reesei Cellulose. J. Biosci. Bioeng. 2016, 121, 27–35.
  • Ali, N.; Xue, Y.; Gan, L.; Liu, J.; Long, M. Purification, Characterization, Gene Cloning and Sequencing of a New β-Glucosidase from Aspergillus niger BE-2. Appl. Biochem. Microbiol. 2016, 52, 564–571.
  • Pei, X.; Zhao, J.-Q.; Cai, P.-L.; Sun, W.-L.; Ren, J.; Wu, Q.-Q.; Zhang, S.-H.; Tian, C. G. Heterologous Expression of a GH3 β-Glucosidase from Neurospora crassa in Pichia pastoris with High Purity and Its Application in the Hydrolysis of Soybean Isoflavone Glycosides. Protein. Expres. Purif. 2016, 119, 75–84.
  • Almeida, J.-M.; Lima, V.-A.; Giloni-Lima, P.-C.; Knob, A. Passion Fruit Peels as Novel Substrate for Enhanced β-Glucosidases Production by Penicillium verruculosum: Potential of the Crude Extract for Biomass Hydrolysis. Biomass. Bioenerg. 2015, 72, 216–226.
  • Zhao, L.-G.; Xie, J.-C.; Zhang, X.-S.; Cao, F.-L.; Pei, J.-J. Overexpression and Characterization of a Glucose-Tolerant β-Glucosidase from Thermotoga Thermarum DSM 5069T with High Catalytic Efficiency of Ginsenoside Rb1 to Rd. J. Mol. Catal. B: Enzym. 2013, 95, 62–69.
  • Dikshit, R.; Tallapragada, P. Paritial Purification and Characterization of β-Glucosidase from Monascus sanguineus. Braz. Arch. Biol. Technol. 2015, 58, 185–191.
  • Yan, Q.-J.; Hua, C.-W.; Yang, S.-Q.; Li, Y.-N.; Jiang, Z.-Q. High Level Expression of Extracellular Secretion of a β-Glucosidase Gene (Ptbglu3) from Paecilomyces thermophila in Pichia pastoris. Protein. Expres. Purif. 2012, 84, 64–72.
  • Muensean, K.; Kim, S.-M. Purification and Characterization of β-Glucosidase Produced by Trichoderma citrinoviride Cultivated on Microalga Chlorella Vulgaris. Appl. Biochem. Microbiol. 2015, 51, 102–107.
  • Gao, L.; Gao, F.; Jiang, X.; Zhang, C.; Zhang, D.; Wang, L.; Wu, G.; Chen, S. Biochemical Characterization of a New β-Glucosidase (Cel3E) from Penicillium piceum and Its Application in Boosting Lignocelluloses Bioconversion and Forming Disaccharide Inducers: New Insights into the Role of β-Glucosidase. Process. Biochem. 2014, 49, 768–774.
  • Bhatia, Y.; Mishra, S.; Bisaria, V. S. Microbial β-Glucosidases: Cloning, Properties, and Applications. Crit. Rev. Biotechnol. 2002, 22, 375–407.
  • LeBlanc, J.-G.; Silvestroni, A.; Connes, C.; Juillard, V.; de Giori, G.-S.; Sesma, F. Reduction of Non-Digestible Oligosaccharides in Soymilk: Application of Engineered Lactic Acid Bacteria That Produce α-Galactosidase. Gen. Mol. Res. 2004, 3, 432–440.
  • Mostafa, F. A.; Ahmed, S.-A.; Helmy, W.-A. Enzymatic Saccharification of Pretreated Lemon Peels for Fermentable Sugar Production. J. Appl. Sci. Res. 2013, 9, 2301–2310.
  • Dhillon, G. S.; Brar, S. K.; Kaur, S.; Metahni, S.; M'hamdi, N. Lactoserum as a Moistening Medium and Crude Inducer for Fungal Cellulose and Hemicellulase Induction through Solid-State Fermentation of Apple Pomace. Biomass. Bioenerg. 2012, 41, 165–174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.