714
Views
6
CrossRef citations to date
0
Altmetric
Articles

Development of an improved lentiviral based vector system for the stable expression of monoclonal antibody in CHO cells

, , , , &

References

  • Kunert, R.; Reinhart, D. Advances in Recombinant Antibody Manufacturing. Appl. Microbiol. Biotechnol. 2016, 100, 3451–3461.
  • Deng, X.; Storz, U.; Doranz, B. J. Enhancing Antibody Patent Protection Using Epitope Mapping Information. MAbs 2018, 10, 204–209.
  • Walsh, G. Biopharmaceutical Benchmarks 2018. Nat. Biotechnol. 2018, 36, 1136–1145.
  • Shukla, A.A.; Wolfe, L.S.; Mostafa, S.S.; Norman, C. Evolving Trends in mAb Production Processes. Bioeng. Transl. Med. 2017, 2, 58–69.
  • Shepard, H.M.; Phillips, G.L.; D Thanos C.; Feldmann, M. Developments in Therapy with Monoclonal Antibodies and Related Proteins. Clin. Med. (Lond). 2017, 17, 220–232.
  • Butler, M.; Spearman, M. The Choice of Mammalian Cell Host and Possibilities for Glycosylation Engineering. Curr. Opin. Biotechnol. 2014, 30, 107–112.
  • Lalonde, M.E.; Durocher, Y. Therapeutic Glycoprotein Production in Mammalian Cells. J. Biotechnol. 2017, 251, 128–140.
  • Dumont, J.; Euwart, D.; Mei, B.; Estes, S.; Kshirsagar, R. Human Cell Lines for Biopharmaceutical Manufacturing: History, Status, and Future Perspectives. Crit. Rev. Biotechnol. 2016, 36, 1110–1122.
  • Wells, E.; Robinson, A.S. Cellular Engineering for Therapeutic Protein Production: Product Quality, Host Modification, and Process Improvement. Biotechnol. J. 2017, 12.1600105.
  • Rajabibazl, M.; Rasaee, M.J.; Forouzandeh, M.; Rahimpour, A. Retroviral Transduction of Fluonanobody and the Variable Domain of Camelid Heavy-Chain Antibodies to Chicken Embryonic Cells. Iran J. Immunol. 2013, 10, 247–258.
  • Lai, T.; Yang, Y.; Ng, S.K. Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production. Pharmaceuticals (Basel). 2013, 6, 579–603.
  • Zhang, L.; Inniss, M.C.; Han, S.; Moffat, M.; Jones, H.; Zhang, B.; Cox, W.L.; Rance, J.R.; Young, R.J. Recombinase-Mediated Cassette Exchange (RMCE) for Monoclonal Antibody Expression in the Commercially Relevant CHOK1SV Cell Line. Biotechnol. Prog. 2015, 31, 1645–1656.
  • Balasubramanian, S.; Rajendra, Y.; Baldi, L.; Hacker, D.L.; Wurm, F.M. Comparison of Three Transposons for the Generation of Highly Productive Recombinant CHO Cell Pools and Cell Lines. Biotechnol. Bioeng. 2016, 113, 1234–1243.
  • Kawabe, Y.; Inao, T.; Komatsu, S.; Huang, G.; Ito, A.; Omasa, T.; Kamihira, M. Improved Recombinant Antibody Production by CHO Cells Using a Production Enhancer DNA Element with Repeated Transgene Integration at a Predetermined Chromosomal site. J. Biosci. Bioeng. 2017, 123, 390–397.
  • Kawabe, Y.; Komatsu, S.; Komatsu, S.; Murakami, M.; Ito, A.; Sakuma, T.; Nakamura, T.; Yamamoto, T.; Kamihira, M. Targeted Knock-in of an scFv-Fc Antibody Gene into the Hprt Locus of Chinese Hamster Ovary Cells Using CRISPR/Cas9 and CRIS-PITCh Systems. J. Biosci. Bioeng. 2018, 125, 599–605.
  • Oberbek, A.; Matasci, M.; Hacker, D.L.; Wurm, F.M. Generation of Stable, High-Producing CHO Cell Lines by Lentiviral Vector-Mediated Gene Transfer in Serum-Free Suspension Culture. Biotechnol. Bioeng. 2011, 108, 600–610.
  • Spencer, H.T.; Denning, G.; Gautney, R.E.; Dropulic, B.; Roy, A.J.; Baranyi, L.; Gangadharan, B.; Parker, E.T.; Lollar, P.; Doering, C.B. Lentiviral Vector Platform for Production of Bioengineered Recombinant Coagulation Factor VIII. Mol. Ther. 2011, 19, 302–309.
  • Benskey, M.J.; Manfredsson, F.P. Lentivirus Production and Purification. Methods Mol. Biol. 2016, 1382, 107–114.
  • Etemadzadeh, M.H.; Arashkia, A.; Roohvand, F.; Ahani, R.; Mohajel, N.; Baniasadi, V.; Norouzian, D.; Azadmanesh, K. Expression of a Biotin Acceptor Peptide-Containing Protein with Potential Incorporation on the Lentiviral Envelope as a Viral Surface Engineering Platform. Res. Pharm. Sci. 2015, 10, 268–274.
  • Girod, P.-A.; Nguyen, D.-Q.; Calabrese, D.; Puttini, S.; Grandjean, M.; Martinet, D.; Regamey, A.; Saugy, D.; Beckmann, J.S.; Bucher, P.; Mermod, N. Genome-Wide Prediction of Matrix Attachment Regions That Increase Gene Expression in Mammalian Cells. Nat. Methods 2007, 4, 747–753.
  • Chen, S.J.; Wang, W.; Zhang, F.Y.; Jia, Y.L.; Wang, X..; Guo, X.; Chen, S.N.; Gao, J.H.; Wang, T.Y. A Chimeric HS4 Insulator-Scaffold Attachment Region Enhances Transgene Expression in Transfected Chinese Hamster Ovary Cells. FEBS Open Bio. 2017, 7, 2021–2030.
  • Kostyrko, K.; Neuenschwander, S.; Junier, T.; Regamey, A.; Iseli, C.; Schmid-Siegert, E.; Bosshard, S.; Majocchi, S.; Le Fourn, V.; Girod, P.-A.; et al. MAR-Mediated Transgene Integration into Permissive Chromatin and Increased Expression by Recombination Pathway Engineering. Biotechnol. Bioeng. 2017, 114, 384–396.
  • Barde, I.; Salmon, P.; Trono, D. Production and Titration of Lentiviral Vectors. Curr. Protoc. Neurosci. 2010,
  • Chu, L.; Blumentals, I.; Maheshwari, G. Production of Recombinant Therapeutic Proteins by Mammalian Cells in Suspension Culture. Methods Mol. Biol. 2005, 308, 107–121.
  • Lee, C.; Kim, J.; Shin, S.G.; Hwang, S. Absolute and Relative QPCR Quantification of Plasmid Copy Number in Escherichia coli. J. Biotechnol. 2006, 123, 273–280.
  • Mason, M.; Sweeney, B.; Cain, K.; Stephens, P.; Sharfstein, S.T. Identifying Bottlenecks in Transient and Stable Production of Recombinant Monoclonal-Antibody Sequence Variants in Chinese Hamster Ovary Cells. Biotechnol. Prog. 2012, 28, 846–855.
  • Dang, Q.; Auten, J.; Plavec, I. Human Beta Interferon Scaffold Attachment Region Inhibits de Novo Methylation and Confers Long-Term, Copy Number-Dependent Expression to a Retroviral Vector. J. Virol. 2000, 74, 2671–2678.
  • Ramezani, A.; Hawley, T.S.; Hawley, R.G. Performance- and Safety-Enhanced Lentiviral Vectors Containing the Human Interferon-Beta Scaffold Attachment Region and the Chicken Beta-Globin Insulator. Blood 2003, 101, 4717–4724.
  • Ayyar, B.V.; Arora, S.; Ravi, S.S. Optimizing Antibody Expression: The Nuts and Bolts. Methods. 2017, 116, 51–62.
  • Fischer, S.; Handrick, R.; Otte, K. The Art of CHO Cell Engineering: A Comprehensive Retrospect and Future Perspectives. Biotechnol. Adv. 2015, 33, 1878–1896.
  • Kumar, P.; Woon-Khiong, C. Optimization of Lentiviral Vectors Generation for Biomedical and Clinical Research Purposes: contemporary Trends in Technology Development and Applications. Curr. Gene. Ther. 2011, 11, 144–153.
  • Ho, S.C.; Bardor, M.; Feng, H.; Tong, Y.W.; Song, Z.; Yap, M.G.; Yang, Y. IRES-Mediated Tricistronic Vectors for Enhancing Generation of High Monoclonal Antibody Expressing CHO Cell Lines. J. Biotechnol. 2012, 157, 130–139.
  • Borman, A.M.; Le Mercier, P.; Girard, M.; Kean, K.M. Comparison of Picornaviral IRES-Driven Internal Initiation of Translation in Cultured Cells of Different Origins. Nucleic Acids Res. 1997, 25, 925–932.
  • Wang, T.Y.; Han, Z.M.; Chai, Y.R.; Zhang, J.H. A Mini Review of MAR-Binding Proteins. Mol. Biol. Rep. 2010, 37, 3553–3560.
  • Liebich, I.; Bode, J.; Reuter, I.; Wingender, E. Evaluation of Sequence Motifs Found in Scaffold/Matrix-Attached Regions (S/MARs). Nucleic Acids Res. 2002, 30, 3433–3442.
  • Harraghy, N.; Buceta, M.; Regamey, A.; Girod, P. A.; Mermod, N. Using Matrix Attachment Regions to Improve Recombinant Protein Production. Methods Mol. Biol. 2012, 801, 93–110.
  • Murray, L.; Travis, M.; Luens-Abitorabi, K.; Olsson, K.; Plavec, I.; Forestell, S.; Hanania, E.G.; Hill, B. Addition of the Human Interferon Beta Scaffold Attachment Region to Retroviral Vector Backbones Increases the Level of in Vivo Transgene Expression among Progeny of Engrafted Human Hematopoietic Stem Cells. Hum. Gene Ther. 2000, 11, 2039–2050.
  • Baranyi, L.; Doering, C.B.; Denning, G.; Gautney, R.E.; Harris, K.T.; Spencer, H.T.; Roy, A.; Zayed, H.; Dropulic, B. Rapid Generation of Stable Cell Lines Expressing High Levels of Erythropoietin, Factor VIII, and an Antihuman CD20 Antibody Using Lentiviral Vectors. Hum. Gene Ther. Methods 2013, 24, 214–227.
  • Mufarrege, E.F.; Antuna, S.; Etcheverrigaray, M.; Kratje, R.; Prieto, C. Development of Lentiviral Vectors for Transient and Stable Protein Overexpression in Mammalian Cells. A New Strategy for Recombinant Human FVIII (rhFVIII) Production. Protein Expr. Purif. 2014, 95, 50–56.
  • Zhang, J.H.; Wang, X.Y.; Wang, T.Y.; Wang, F.; Dong, W.H.; Wang, L.; Zhao, C.P.; Chai, S.J.; Yang, R.; Li, Q. Distance Effect of Matrix Attachment Regions on Transgene Expression in Stably Transfected Chinese Hamster Ovary Cells. Biotechnol. Lett. 2014, 36, 1937–1943.
  • Jia, Y.L.; Guo, X.; Wang, X.C.; Wang, T.Y. Human Genome-Derived TOP1 Matrix Attachment Region Enhances Transgene Expression in the Transfected CHO Cells. Biotechnol. Lett. 2019.
  • Bayat, H.; Hossienzadeh, S.; Pourmaleki, E.; Ahani, R.; Rahimpour, A. Evaluation of Different Vector Design Strategies for the Expression of Recombinant Monoclonal Antibody in CHO Cells. Prep. Biochem. Biotechnol. 2018, 48, 160–164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.