221
Views
5
CrossRef citations to date
0
Altmetric
Articles

Utilization of glycerol and crude glycerol for polysaccharide production by an endophytic fungus Chaetomium globosum CGMCC 6882

, , , &

References

  • Abomohra, A.E.-F.; Eladel, H.; El-Esawi, M.; Wang, S.; Wang, Q.; He, Z.; Feng, Y.; Shang, H.; Hanelt, D. Effect of Lipid-Free Microalgal Biomass and Waste Glycerol on Growth and Lipid Production of Scenedesmus obliquus: Innovative Waste Recycling for Extraordinary Lipid Production. Bioresour. Technol. 2018, 249, 992–999.
  • Koller, M.; Braunegg, G. Biomediated Production of Structurally Diverse Poly(Hydroxyalkanoates) from Surplus Streams of the Animal Processing Industry. Polimery 2015, 60, 298–308.
  • Dikshit, P.K.; Kharmawlong, G.J.; Moholkar, V.S. Investigations in Sonication-Induced Intensification of Crude Glycerol Fermentation to Dihydroxyacetone by Free and Immobilized Gluconobacter oxydans. Bioresour. Technol. 2018, 256, 302–311.
  • Luo, X.; Ge, X.; Cui, S.; Li, Y. Value-Added Processing of Crude Glycerol into Chemicals and Polymers. Bioresour. Technol. 2016, 215, 144–154.
  • Lv, X.; Lin, J.; Luo, L.; Zhang, D.; Lei, S.; Xiao, W.; Xu, Y.; Gong, Y.; Liu, Z. Enhanced Enzymatic Saccharification of Sugarcane Bagasse Pretreated by Sodium Methoxide with Glycerol. Bioresour. Technol. 2018, 249, 226–233.
  • Sarma, S.; Anand, A.; Dubey, V.K.; Moholkar, V.S. Metabolic Flux Network Analysis of Hydrogen Production from Crude Glycerol by Clostridium pasteurianum. Bioresour. Technol. 2017, 242, 169–177.
  • Wang, Z.; Wu, J.; Zhu, L.; Zhan, X. Activation of Glycerol Metabolism in Xanthomonas campestris by Adaptive Evolution to Produce a High-Transparency and Low-Viscosity Xanthan Gum from Glycerol. Bioresour. Technol. 2016, 211, 390–397.
  • Hermann-Krauss, C.; Koller, M.; Muhr, A.; et al. Archaeal Production of Polyhydroxyalkanoate (PHA) co- and Terpolyesters from Biodiesel Industry-Derived by-Products. Archaea. 2013, 2013, 129268.
  • Jia, D.; Rao, C.; Xue, S.; Lei, J. Purification, Characterization and Neuroprotective Effects of a Polysaccharide from Gynostemma Pentaphyllum. Carbohydr. Polym. 2015, 122, 93–100.
  • Wang, J.; Yang, J.-L.; Zhou, P.-P.; Meng, X.-H.; Shi, Y.-P. Further New Gypenosides from Jiaogulan (Gynostemma Pentaphyllum). J. Agric. Food Chem. 2017, 65, 5926–5934.
  • Liu, J.; Zhang, L.; Ren, Y.; Gao, Y.; Kang, L.; Qiao, Q. Anticancer and Immunoregulatory Activity of Gynostemma Pentaphyllum Polysaccharides in H22 Tumor-Bearing Mice. Int. J. Biol. Macromol. 2014, 69, 1–4.
  • Bahaloo-Horeh, N.; Mousavi, S.M. Enhanced Recovery of Valuable Metals from Spent Lithium-Ion Batteries through Optimization of Organic Acids Produced by Aspergillus niger. Waste Manag. 2017, 60, 666–679.
  • Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y. C. Carbohydrate Analysis by a Phenol–Sulfuric Acid Method in Microplate Format. Anal. Biochem. 2005, 339, 69–72.
  • Wang, Z.; Xue, R.; Cui, J.; Wang, J.; Fan, W.; Zhang, H.; Zhan, X. Antibacterial Activity of a Polysaccharide Produced from Chaetomium globosum CGMCC 6882. Int. J. Biol. Macromol. 2019, 125, 376–382.
  • Wang, Z.; Zhao, X.; Liu, X.; Lu, W.; Jia, S.; Hong, T.; Li, R.; Zhang, H.; Peng, L.; Zhan, X.; et al. Anti-Diabetic Activity Evaluation of a Polysaccharide Extracted from Gynostemma pentaphyllum. Int. J. Biol. Macromol. 2019, 126, 209–214.
  • Donot, F.; Fontana, A.; Baccou, J.C.; Schorr-Galindo, S. Microbial Exopolysaccharides: Main Examples of Synthesis, Excretion, Genetics and Extraction. Carbohydr. Polym. 2012, 87, 951–962.
  • Li, J.; Liu, R.; Chang, G.; Li, X.; Chang, M.; Liu, Y.; Jin, Q.; Wang, X. A Strategy for the Highly Efficient Production of Docosahexaenoic Acid by Aurantiochytrium limacinum SR21 Using Glucose and Glycerol as the Mixed Carbon Sources. Bioresour. Technol. 2015, 177, 51–57.
  • Monnier, S.; Delarue, M.; Brunel, B.; Dolega, M.E.; Delon, A.; Cappello, G. Effect of an Osmotic Stress on Multicellular Aggregates. Methods 2016, 94, 114–119.
  • Lv, J.; Zhang, B.-B.; Liu, X.-D.; Zhang, C.; Chen, L.; Xu, G.-R.; Cheung, P.C.K. Enhanced Production of Natural Yellow Pigments from Monascus purpureus by Liquid Culture: The Relationship between Fermentation Conditions and Mycelial Morphology. J. Biosci. Bioeng. 2017, 124, 452–458.
  • Chen, G.; Huang, T.; Bei, Q.; Tian, X.; Wu, Z. Correlation of Pigment Production with Mycelium Morphology in Extractive Fermentation of Monascus anka GIM 3.592. Process Biochem. 2017, 58, 42–50.
  • Driouch, H.; Hänsch, R.; Wucherpfennig, T.; Krull, R.; Wittmann, C. Improved Enzyme Production by Bio-Pellets of Aspergillus niger: Targeted Morphology Engineering Using Titanate Microparticles. Biotechnol. Bioeng. 2012, 109, 462–471.
  • Venkataramanan, K.P.; Boatman, J.J.; Kurniawan, Y.; Taconi, K.A.; Bothun, G.D.; Scholz, C. Impact of Impurities in Biodiesel-Derived Crude Glycerol on the Fermentation by Clostridium pasteurianum ATCC 6013. Appl. Microbiol. Biotechnol. 2012, 93, 1325–1335.
  • Anand, P.; Saxena, R.K. A Comparative Study of Solvent-Assisted Pretreatment of Biodiesel Derived Crude Glycerol on Growth and 1,3-Propanediol Production from Citrobacter freundii. New Biotechnol. 2012, 29, 199–205.
  • Iyyappan, J.; Bharathiraja, B.; Baskar, G.; Jayamuthunagai, J.; Barathkumar, S.; Anna Shiny, R. Malic Acid Production by Chemically Induced Aspergillus niger MTCC 281 Mutant from Crude Glycerol. Bioresour. Technol. 2018, 251, 264–267.
  • de Jesus Assis, D.; Brandão, L.V.; de Sousa Costa, L.A.; Figueiredo, T.V.B.; Sousa, L.S.; Padilha, F.F.; Druzian, J.I. A Study of the Effects of Aeration and Agitation on the Properties and Production of Xanthan Gum from Crude Glycerin Derived from Biodiesel Using the Response Surface Methodology. Appl. Biochem. Biotechnol. 2014, 172, 2769–2785.
  • Wang, Z.; Wu, J.; Zhu, L.; Zhan, X. Characterization of Xanthan Gum Produced from Glycerol by a Mutant Strain Xanthomonas campestris CCTCC M2015714. Carbohydr. Polym. 2017, 157, 521–526.
  • Woodward, R.; Yi, W.; Li, L.; Zhao, G.; Eguchi, H.; Sridhar, P.R.; Guo, H.; Song, J.K.; Motari, E.; Cai, L.; et al. In Vitro Bacterial Polysaccharide Biosynthesis: Defining the Functions of Wzy and Wzz. Nat. Chem. Biol. 2010, 6, 418–423.
  • Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological Activities and Pharmaceutical Applications of Polysaccharide from Natural Resources: A Review. Carbohydr. Polym. 2018, 183, 91–101.
  • Wakai, S.; Arazoe, T.; Ogino, C.; Kondo, A. Future Insights in Fungal Metabolic Engineering. Bioresour. Technol. 2017, 245, 1314–1326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.