286
Views
3
CrossRef citations to date
0
Altmetric
Articles

Development of urea biosensor using non-covalent complexes of urease with aldehyde derivative of PEG and analysis on serum samples

, &

References

  • Bergmann, N.M.; Peppas, N.A. Molecularly Imprinted Polymers with Specific Recognition for Macromolecules and Proteins. Progr. Polym. Sci. 2008, 33, 271–288. DOI: 10.1016/j.progpolymsci.2007.09.004.
  • Wang, Y.; Hsieh, Y.L. Enzyme Immobilization to Ultra‐Fine Cellulose Fibers Via Amphiphilic Polyethylene Glycol Spacers. J. Polym. Sci. A Polym. Chem. 2004, 42, 4289–4299. DOI: 10.1002/pola.20271.
  • Godjevargova, T.; Gabrovska, K. Immobilization of Urease onto Chemically Modified Acrylonitrile Copolymer Membranes. J. Biotechnol. 2003, 103, 107–111. DOI: 10.1016/S0168-1656(03)00107-X.
  • Bisht, V.; Takashima, W.; Kaneto, K. An Amperometric Urea Biosensor Based on Covalent Immobilization of Urease onto an Electrochemically Prepared Copolymer Poly (N-3-Aminopropyl Pyrrole-Co-Pyrrole) Film. Biomaterials. 2005, 26, 3683–3690.
  • Arica, M.Y. Epoxy‐Derived pHEMA Membrane for Use Bioactive Macromolecules Immobilization: Covalently Bound Urease in a Continuous Model System. J. Appl. Polym. Sci. 2000, 77, 2000–2008. DOI: 10.1002/1097-4628(20000829)77:9<2000::AID-APP16>3.0.CO;2-M.
  • Cacialli, F.; Samorì, P.; Silva, C. Supramolecular Architectures. Mater. Today 2004, 7, 24–32. DOI: 10.1016/S1369-7021(04)00186-5.
  • Zigon, M.; Ambrozic, G. Supramolecular Polymers. Mater. Technol. 2003, 37, 231–236.
  • Chauhan, M.; Maddi, C.; Jha, A.; Subramanian, V.; Valdastri, P. Characterization of Urease Enzyme Using Raman and FTIR Spectroscopy. Novel Tech. Microscopy. 2019, JT4A, 46.
  • Mazzei, L.; Wenzel, M.N.; Cianci, M.; Palombo, M.; Casini, A.; Ciurli, S. Inhibition Mechanism of Urease by Au (III) Compounds Unveiled by X-Ray Diffraction Analysis. ACS Med. Chem. Lett. 2019,10, 564–570.
  • Zhao, J.; Yu, C.L.; Fang, W.; Lin, J.D.; Chen, G.; Wang, X.Q. Spectroscopic and Mechanistic Analysis of the Interaction between Jack Bean Urease and Polypseudorotaxane Fabricated with Bis-Thiolated Poly (Ethylene Glycol) and α-Cyclodextrin. Colloids Surf. B Biointerfaces. 2019, 176, 276–287. DOI: 10.1016/j.colsurfb.2019.01.011.
  • Bzura, J.; Koncki, R. A Mechanized Urease Activity Assay. Enzyme Microbial. Technol. 2019, 123, 1–7. DOI: 10.1016/j.enzmictec.2019.01.001.
  • Harris, J. M. Poly (Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications; Springer Science & Business Media: Berlin, Germany, 2013; 385 pp.
  • Dekker, M. Protein Immobilization: Fundamentals and Applications; Taylor: New York, NY, 2000; 85 pp.
  • Hamarat Baysal, Ş.; Uslan, A. Encapsulation of PEG-Urease/PEG-AlaDH Enzyme System in Erythrocyte. Artif. Cells Blood Substit. Biotechnol. 2001, 29, 405–412. DOI: 10.1081/BIO-100106924.
  • Baysal, ŞH.; Uslan, A.H.; Pala, H.H.; Tunçoku, Ö. Encapsulation of PEG-Urease/PEG-AlaDH within Sheep Erythrocytes and Determination of the System’s Activity in Lowering Blood Levels of Urea in Animal Models. Artif. Cells Blood Substit. Biotechnol. 2007, 35, 391–403. DOI: 10.1080/10731190701460259.
  • Bayramoglu, G.; Arica, M.Y. Activity and Stability of Urease Entrapped in Thermosensitive Poly (N-Isopropylacrylamide-Co-Poly (Ethyleneglycol)-Methacrylate). Bioprocess. Biosyst. Eng. 2014, 37, 235–243. Hydrogel. DOI: 10.1007/s00449-013-0990-7.
  • Tyagi, M.; Tomar, M.; Gupta, V. Enhanced Electron Transfer Properties of NiO Thin Film for the Efficient Detection of Urea. Mater. Science. Eng. B. 2019, 240, 147–155. DOI: 10.1016/j.mseb.2018.10.015.
  • Dagys, M.; Gureviciene, V.; Razumiene, J. Development of Biosensor-Based Device for Urea Concentration Measurement in Industrial Fertilizer Samples, Meeting Abstracts. Electrochem. Soc. 2019, 1096–1096.
  • Prats-Alfonso, E.; Abad, L.; Casañ-Pastor, N.; Gonzalo-Ruiz, J.; Baldrich, E. Iridium Oxide pH Sensor for Biomedical Applications. Case Urea–Urease in Real Urine Samples. Biosens. Bioelectron. 2013, 39, 163–169. DOI: 10.1016/j.bios.2012.07.022.
  • Jakhar, S.; Pundir, C. Preparation, Characterization and Application of Urease Nanoparticles for Construction of an Improved Potentiometric Urea Biosensor. Biosens. Bioelectron. 2018, 100, 242–250. DOI: 10.1016/j.bios.2017.09.005.
  • Senel, M.; Dervisevic, M.; Voelcker, N.H. Gold Microneedles Fabricated by Casting of Gold Ink Used for Urea Sensing. Mater. Lett. 2019, 243, 50–53. DOI: 10.1016/j.matlet.2019.02.014.
  • Limbut, W.; Thavarungkul, P.; Kanatharana, P.; Asawatreratanakul, P.; Limsakul, C.; Wongkittisuksa, B. Comparative Study of Controlled Pore Glass, Silica Gel and Poraver® for the Immobilization of Urease to Determine Urea in a Flow Injection Conductimetric Biosensor System. Biosens. Bioelectron. 2004, 19, 813–821. DOI: 10.1016/j.bios.2003.08.007.
  • Duong, H.D.; Rhee, J.I. Development of a Ratiometric Fluorescent Urea Biosensor Based on the Urease Immobilized onto the Oxazine 170 Perchlorate-Ethyl Cellulose Membrane. Talanta. 2015, 134, 333–339.
  • Llopis‐Lorente, A.; Villalonga, R.; Marcos, M.D.; Martínez‐Máñez, R.; Sancenón, F. A Versatile New Paradigm for the Design of Optical Nanosensors Based on Enzyme‐Mediated Detachment of Labeled Reporters: The Example of Urea Detection. Chem. Eur. J. 2019, 25, 3575–3581. DOI: 10.1002/chem.201804706.
  • Altıkatoğlu Yapaöz, M.; Destanoğlu, A. Urease-Dextran Complexes with Enhanced Enzymatic Activity and Stability. J. Carbohyd. Chem. 2017, 36, 325–335. DOI: 10.1080/07328303.2017.1403614.
  • Altikatoglu, M.; Kuzu, H. Improvement of Enzyme Stability via Non-Covalent Complex Formation with Dextran against Temperature and Storage Lifetime. Pol. J. Chem. Technol. 2010, 12, 12–16. DOI: 10.2478/v10026-010-0003-4.
  • McClements, D.J. Non-Covalent Interactions between Proteins and Polysaccharides. Biotechnol. Adv. 2006, 24, 621–625. DOI: 10.1016/j.biotechadv.2006.07.003.
  • Baysal, S. H. Alginate Beads Encapsulation Matrix for Urease and Polyethyleneglycol-Urease. Artif. Cells Blood Substit. Biotechnol. 2007, 35, 457–465. DOI: 10.1080/10731190701460374.
  • Kutcherlapati, S.R.; Yeole, N.; Jana, T. Urease Immobilized Polymer Hydrogel: Long-Term Stability and Enhancement of Enzymatic Activity. J. Colloid Interface Sci. 2016, 463, 164–172. DOI: 10.1016/j.jcis.2015.10.051.
  • Fernández-Lafuente, R.; Rodrı́guez, V.; Mateo, C.; Penzol, G.; Hernández-Justiz, O.; Irazoqui, G.; Villarino, A.; Ovsejevi, K.; Batista, F.;.Guisán, J.M. Stabilization of Multimeric Enzymes Via Immobilization and Post-Immobilization Techniques. J. Mol. Catal. B Enzym. 1999, 7, 181–189. DOI: 10.1016/S1381-1177(99)00028-4.
  • De la Casa, R.; Guisán, J.; Sánchez-Montero, J.; Sinisterra, J. Modification of the Activities of Two Different Lipases from Candida rugosa with Dextrans. Enzyme Microb. Technol. 2002, 30, 30–40. DOI: 10.1016/S0141-0229(01)00446-X.
  • Monier, M.; El-Sokkary, A. Modification and Characterization of Cellulosic Cotton Fibers for Efficient Immobilization of Urease. Int. J. Biol. Macromol. 2012, 51, 18–24. DOI: 10.1016/j.ijbiomac.2012.04.019.
  • Petrov, P.; Pavlova, S.; Tsvetanov, C.B.; Topalova, Y.; Dimkov, R. In Situ Entrapment of Urease in Cryogels of Poly (N‐Isopropylacrylamide): An Effective Strategy for Noncovalent Immobilization of Enzymes. J. Appl. Polym. Sci. 2011, 122, 1742–1748. DOI: 10.1002/app.34063.
  • Teke, A.B.; Baysal,. H.S. Immobilization of Urease Using Glycidyl Methacrylate Grafted Nylon-6-Membranes. Process Biochem. 2007, 42, 439–443. DOI: 10.1016/j.procbio.2006.08.012.
  • Akkaya, A. Covalent Immobilization of Urease to Modified Ethyl Cellulose. Fibers Polym. 2013, 14, 22–27. DOI: 10.1007/s12221-013-0022-x.
  • Niemeyer, C.M. Bioconjugation Protocols: Strategies and Methods; Springer Science & Business Media: Berlin, Germany, 2004.
  • Roberts, M.; Bentley, M.; Harris, J. Chemistry for Peptide and Protein PEGylation. Adv. Drug. Deliv. Rev. 2012, 64, 116–127. DOI: 10.1016/j.addr.2012.09.025.
  • Damodaran, V.B.; Fee, C. Protein PEGylation: An Overview of Chemistry and Process Considerations. Eur. Pharm. Rev. 2010, 15, 18–26.
  • Margolin, A.L.; Sherstyuk, S.F.; Izumrudov, V.A.; Zezin, A.B.; Kabanov, V.A. Enzymes in Polyelectrolyte Complexes: The Effect of Phase Transition on Thermal Stability. Eur. J. Biochem. 1985, 146, 625–632. DOI: 10.1111/j.1432-1033.1985.tb08697.x.
  • Kumar, S.; Dwevedi, A.; Kayastha, A.M. Immobilization of Soybean (Glycine max) Urease on Alginate and Chitosan Beads Showing Improved Stability: Analytical Applications. J. Mol. Catal. B 2009, 58, 138–145. DOI: 10.1016/j.molcatb.2008.12.006.
  • Sahoo, B.; Sahu, S.K.; Pramanik, P. A Novel Method for the Immobilization of Urease on Phosphonate Grafted Iron Oxide Nanoparticle. J. Mol. Catal. B Enzym. 2011, 69, 95–102. DOI: 10.1016/j.molcatb.2011.01.001.
  • Umezawa, Y.; Bühlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pur. Appl. Chem. 2000, 72, 1851–2082. DOI: 10.1351/pac200072101851.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.