681
Views
8
CrossRef citations to date
0
Altmetric
Articles

Characterization of marine bacterial carbonic anhydrase and their CO2 sequestration abilities based on a soil microcosm

, &

References

  • Bhagat, C.; Dudhagara, P.; Tank, S. Trends, Application and Future Prospectives of Microbial Carbonic Anhydrase Mediated Carbonation Process for CCUS. J. Appl. Microbiol. 2018, 124, 316–335. DOI: 10.1111/jam.13589.
  • McKibbin, W. J.; Wilcoxen, P. J. Climate Change Policy after Kyoto: Blueprint for a Realistic Approach; Brookings Institution Press: Washington, DC, 2002.
  • Bond, G. M.; Stringer, J.; Brandvold, D. K.; Simsek, F. A.; Medina, M. G.; Egeland, G. Development of Integrated System for Biomimetic CO2 Sequestration Using the Enzyme Carbonic Anhydrase. Energy Fuels 2001, 15, 309–316. DOI: 10.1021/ef000246p.
  • Dhami, N. K.; Reddy, M. S.; Mukherjee, A. Synergistic Role of Bacterial Urease and Carbonic Anhydrase in Carbonate Mineralization. Appl. Biochem. Biotechnol. 2014, 172, 2552–2561. DOI: 10.1007/s12010-013-0694-0.
  • Murray, A. B.; Aggarwal, M.; Pinard, M.; Vullo, D.; Patrauchan, M.; Supuran, C. T.; McKenna, R. Structural Mapping of Anion Inhibitors to β‐Carbonic Anhydrase psCA3 from Pseudomonas aeruginosa. ChemMedChem 2018, 13, 2024–2029. DOI: 10.1002/cmdc.201800375.
  • Li, W.; Liu, L. P.; Zhou, P. P.; Cao, L.; Yu, L. J.; Jiang, S. Y. Calcite Precipitation Induced by Bacteria and Bacterially Produced Carbonic Anhydrase. Curr. Sci. 2011, 502–508.
  • Yadav, R. R.; Krishnamurthi, K.; Mudliar, S. N.; Devi, S. S.; Naoghare, P. K.; Bafana, A.; Chakrabarti, T. Carbonic Anhydrase Mediated Carbon Dioxide Sequestration: Promises, Challenges and Future Prospects. J. Basic Microbiol. 2014, 54, 472–481. DOI: 10.1002/jobm.201300849.
  • Işık, S.; Vullo, D.; Durdagi, S.; Ekinci, D.; Şentürk, M.; Çetin, A.; Şentürk, E.; Supuran, C. T. Interaction of Carbonic Anhydrase Isozymes I, II, and IX with Some Pyridine and Phenol Hydrazinecarbothioamide Derivatives. Bioorg. Med. Chem. Lett. 2015, 25, 5636–5641. DOI: 10.1016/j.bmcl.2015.10.021.
  • Angeli, A.; Pinteala, M.; Maier, S. S.; Del Prete, S.; Capasso, C.; Simionescu, B. C.; Supuran, C. T. Inhibition of Bacterial α-, β-and γ-Class Carbonic Anhydrases with Selenazoles Incorporating Benzenesulfonamide Moieties. J. Enzyme Inhib. Med. Chem. 2019, 34, 244–249. DOI: 10.1080/14756366.2018.1547287.
  • Knorre, H. V.; Krumbein, W. E. Bacterial calcification. In: Microbial Sediments; Springer: Berlin, Heidelberg, 2000; 25–31.
  • Ehrlich, H. L. How Microbes Influence Mineral Growth and Dissolution. Chem. Geol. 1996, 132, 5–9. DOI: 10.1016/S0009-2541(96)00035-6.
  • Mc Connaughey, T. A.; Whelan, J. F. Calcification Generates Protons for Nutrient and Bicarbonate Uptake. Earth Sci. Rev. 1997, 42, 95–117. DOI: 10.1016/S0012-8252(96)00036-0.
  • Ren, S.; Feng, Y.; Wen, H.; Li, C.; Sun, B.; Cui, J.; Jia, S. Immobilized Carbonic Anhydrase on Mesoporous Cruciate Flower-like Metal Organic Framework for Promoting CO2 Sequestration. Int. J. Biol. Macromol. 2018, 117, 189–198. DOI: 10.1016/j.ijbiomac.2018.05.173.
  • Yadav, R. R.; Mudliar, S. N.; Shekh, A. Y.; Fulke, A. B.; Devi, S. S.; Krishnamurthi, K.; Juwarkar, A.; Chakrabarti, T. Immobilization of Carbonic Anhydrase in Alginate and Its Influence on Transformation of CO2 to Calcite. Proc. Biochem. 2012, 47, 585–590. DOI: 10.1016/j.procbio.2011.12.017.
  • Vinoba, M.; Bhagiyalakshmi, M.; Jeong, S. K.; Nam, S. C.; Yoon, Y. Carbonic Anhydrase Immobilized on Encapsulated Magnetic Nanoparticles for CO2 Sequestration. Chem. Eur. J. 2012, 18, 12028–12034. DOI: 10.1002/chem.201201112.
  • Ozdemir, E. Biomimetic CO2 Sequestration: 1. Immobilization of Carbonic Anhydrase within Polyurethane Foam. Energy Fuels 2009, 23, 5725–5730. DOI: 10.1021/ef9005725.
  • Kalogeris, E.; Sanakis, Y.; Mamma, D.; Christakopoulos, P.; Kekos, D.; Stamatis, H. Properties of Catechol 1, 2-Dioxygenase from Pseudomonas putida Immobilized in Calcium Alginate Hydrogels. Enzyme Microb. Technol. 2006, 39, 1113–1121. DOI: 10.1016/j.enzmictec.2006.02.026.
  • Hosseinkhani, S.; Nemat-Gorgani, M. Partial Unfolding of Carbonic Anhydrase Provides a Method for Its Immobilization on Hydrophobic Adsorbents and Protects It against Irreversible Thermoinactivation. Enzyme Microb. Technol. 2003, 33, 179–184. DOI: 10.1016/S0141-0229(03)00097-8.
  • Bhattacharya, S.; Nayak, A.; Schiavone, M.; Bhattacharya, S. Solubilization and Concentration of Carbon Dioxide: Novel Spray Reactors with Immobilized Carbonic Anhydrase. Biotechnol. Bioeng. 2004, 86, 37–46. DOI: 10.1002/bit.20042.
  • Ramanan, R.; Kannan, K.; Sivanesan, S. D.; Mudliar, S.; Kaur, S.; Tripathi, A. K.; Chakrabarti, T. Bio-Sequestration of Carbon Dioxide Using Carbonic Anhydrase Enzyme Purified from Citrobacter freundii. World J. Microbiol. Biotechnol. 2009, 25, 981–987. DOI: 10.1007/s11274-009-9975-8.
  • Victoria, M.; Fernando, V.; Isabelle, M.; Navaza, A.; Haouz, A.; González-Lebrero, R. M.; Kaufman, S. B.; Zabaleta, E. Recombinant Plant Gamma Carbonic Anhydrase Homotrimers Bind Inorganic Carbon. FEBS Lett. 2009, 3425–3430. DOI: 10.1016/j.febslet.2009.09.055.
  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning: A Laboratory Manual (No. Ed. 2); Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1989.
  • Amann, R. I.; Ludwig, W.; Schleifer, K. H. Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiol. Rev. 1995, 59, 143–169.
  • Al-Dhrub, A. H. A.; Sahin, S.; Ozmen, I.; Tunca, E.; Bulbul, M. Immobilization and Characterization of Human Carbonic Anhydrase I on Amine Functionalized Magnetic Nanoparticles. Proc. Biochem. 2017, 57, 95–104. DOI: 10.1016/j.procbio.2017.03.025.
  • Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275.
  • Nathan, V. K.; Ammini, P.; Vijayan, J. Photocatalytic Degradation of Synthetic Dyes Using Iron (III) Oxide Nanoparticles (Fe2O3-Nps) Synthesised Using Rhizophora Mucronata Lam. IET Nanobiotechnol. 2019, 13, 120–123.
  • Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M. R.; Appel, R. D., Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Humana Press: New York, NY, 2005; pp. 571–607.
  • Geourjon, C.; Deleage, G. SOPMA: significant Improvements in Protein Secondary Structure Prediction by Consensus Prediction from Multiple Alignments. Bioinform 1995, 11, 681–684. DOI: 10.1093/bioinformatics/11.6.681.
  • Salam, L. B.; Ilori, M. O.; Amund, O. O. Carbazole Degradation in the Soil Microcosm by Tropical Bacterial Strains. Braz. J. Microbiol. 2015, 46, 1037–1044. DOI: 10.1590/S1517-838246420140610.
  • Bhattacharya, A.; Shrivastava, A.; Sharma, A. Evaluation of Enhanced Thermostability and Operational Stability of Carbonic Anhydrase from Micrococcus Species. Appl. Biochem. Biotechnol. 2013, 170, 756–773. DOI: 10.1007/s12010-013-0226-y.
  • Di Fiore, A.; Alterio, V.; Monti, S. M.; De Simone, G.; D'Ambrosio, K. Thermostable Carbonic Anhydrases in Biotechnological Applications. Int. J. Mol. Sci. 2015, 16, 15456–15480. DOI: 10.3390/ijms160715456.
  • Sundaram, S.; Thakur, I. S. Biosurfactant Production by a CO2 Sequestering Bacillus sp. strain ISTS2. Bioresour. Technol. 2015, 188, 247–250. DOI: 10.1016/j.biortech.2015.01.029.
  • Faridi, S.; Satyanarayana, T. Novel Alkali Stable α-Carbonic Anhydrase from the Polyextremophilic Bacterium Bacillus halodurans: characteristics and Applicability in Flue Gas CO2 Sequestration. Environ. Sci. Pollut. Res. 2016, 23, 15236–15249. DOI: 10.1007/s11356-016-6642-0.
  • Faridi, S.; Bose, H.; Satyanarayana, T. Utility of Immobilized Recombinant Carbonic Anhydrase of Bacillus halodurans TSLV1 on the Surface of Modified Iron Magnetic Nanoparticles in Carbon Sequestration. Energy Fuels 2017, 31, 3002–3009. DOI: 10.1021/acs.energyfuels.6b02777.
  • Priya, J. N.; Kannan, M. Effect of Carbonic Anhydrase and Urease on Bacterial Calcium Carbonate Precipitation. Int. J. Pharma Bio. Sci. 2017, 8, 609–614.
  • Li, M.; Zhu, X.; Wilkinson, S.; Huang, M.; Achal, V. Complete Genome Sequence of Carbonic Anhydrase Producing Psychrobacter sp. SHUES1. Front. Microbiol. 2016, 7, 1442.
  • Achal, V.; Mukherjee, A.; Reddy, M. S. Microbial Concrete: Way to Enhance the Durability of Building Structures. J. Mater. Civil Eng. 2011, 23, 730–734. DOI: 10.1061/(ASCE)MT.1943-5533.0000159.
  • Muley, P.; Dhumal, M.; Vora, D. Sequestration of Atmospheric Carbon Dioxide by Microbial Carbonic Anhydrase. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 45–48. DOI: 10.9790/2402-081134548.
  • Peet, K. C.; Thompson, J. R. Draft Genome Sequences of Supercritical CO2-Tolerant Bacteria Bacillus subterraneus MITOT1 and Bacillus cereus MIT0214. Genome Announc. 2015, 3, e00140–15.
  • Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; Ferraroni, M.; Osman, S. M.; AlOthman, Z.; Supuran, C. T.; Capasso, C. Sulfonamide Inhibition Studies of the β-Carbonic Anhydrase from the Pathogenic Bacterium Vibrio cholerae. Bioorg. Med. Chem. 2016, 24, 1115–1120. DOI: 10.1016/j.bmc.2016.01.037.
  • De Vita, D.; Angeli, A.; Pandolfi, F.; Bortolami, M.; Costi, R.; Di Santo, R.; Suffredini, E.; Ceruso, M.; Del Prete, S.; Capasso, C.; et al. Inhibition of the α-Carbonic Anhydrase from Vibrio cholerae with Amides and Sulfonamides Incorporating Imidazole Moieties. J. Enzyme Inhib. Med. Chem. 2017, 32, 798–804.
  • Angeli, A.; Del Prete, S.; Donald, W. A.; Capasso, C.; Supuran, C. T. The γ-Carbonic Anhydrase from the Pathogenic Bacterium Vibrio cholerae Is Potently Activated by Amines and Amino Acids. Bioorg. Chem. 2018, 77, 1–5. DOI: 10.1016/j.bioorg.2018.01.003.
  • Zhang, Z.; Lian, B.; Hou, W.; Chen, M.; Li, X.; Shen, W.; Li, Y. Optimization of Nutritional Constituents for Carbonic Anhydrase Production by Bacillus mucilaginosus K02. Afr. J. Biotechnol. 2011, 10, 8403–8413.
  • Bhagat, C.; Tank, S.; Ghelani, A.; Dudhagara, P.; Patel, R. Bio Remediation of CO2 and Characterization of Carbonic Anhydrase from Mangrove Bacteria. J. Environ. Sci. Technol. 2014, 7, 76–83. DOI: 10.3923/jest.2014.76.83.
  • Sundaram, S.; Thakur, I. S. Induction of Calcite Precipitation through Heightened Production of Extracellular Carbonic Anhydrase by CO2 Sequestering Bacteria. Biores. Technol. 2018, 253, 368–371. DOI: 10.1016/j.biortech.2018.01.081.
  • Orhan, F.; Şentürk, M.; Supuran, C. T. Interaction of Anions with a Newly Characterized Alpha Carbonic Anhydrase from Halomonas sp. J. Enzyme Inhib. Med. Chem. 2016, 31, 1119–1123. DOI: 10.3109/14756366.2015.1100177.
  • Lotlikar, S. R.; Hnatusko, S.; Dickenson, N. E.; Choudhari, S. P.; Picking, W. L.; Patrauchan, M. A. Three Functional β-Carbonic Anhydrases in Pseudomonas aeruginosa PAO1: Role in Survival in Ambient Air. Microbiology 2013, 159, (8), 1748. DOI: 10.1099/mic.0.066357-0.
  • Billings, S. A.; Lichter, J.; Ziegler, S. E.; Hungate, B. A.; Richter, D. B. A Call to Investigate Drivers of Soil Organic Matter Retention vs. Mineralization in a High CO2 World. Soil Biol. Biochem. 2010, 42, 665–668. DOI: 10.1016/j.soilbio.2010.01.002.
  • Bhattacharya, S.; Schiavone, M.; Chakrabarti, S.; Bhattacharya, S. K. CO2 Hydration by Immobilized Carbonic Anhydrase. Biotechnol. Appl. Biochem. 2003, 38, 111–117. DOI: 10.1042/BA20030060.
  • Verma, A.; Singh, V. K.; Gaur, S. Computational Based Functional Analysis of Bacillus Phytases. Comput. Biol. Chem. 2016, 60, 53–58. DOI: 10.1016/j.compbiolchem.2015.11.001.
  • Pramanik, K.; Ghosh, P. K.; Ray, S.; Sarkar, A.; Mitra, S.; Maiti, T. K. An In Silico Structural, Functional and Phylogenetic Analysis with Three Dimensional Protein Modeling of Alkaline Phosphatase Enzyme of Pseudomonas aeruginosa. J. Genet. Eng. Biotechnol. 2017, 15, 527–537. DOI: 10.1016/j.jgeb.2017.05.003.
  • Pramanik, K.; Rajbhar, P.; Soren, T.; Maiti, T. K. In Silico Structural, Functional and Phylogenetic Analyses of Corynebacterium aspartokinase: An Enzyme of Aspartate Family of Amino Acids. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5, 981–987.
  • Pramanik, K.; Soren, T.; Mitra, S.; Maiti, T. K. In Silico Structural and Functional Analysis of Mesorhizobium ACC Deaminase. Comput. Biol. Chem. 2017, 68, 12–21. DOI: 10.1016/j.compbiolchem.2017.02.005.
  • Debashree, K.; Saurov, M.; Bhaben, T. In-Silico Comparative Structural Modeling of Carbonic Anhydrase of the Marine Diatom Thalassiosira pseudonana Dates. J. Res. Bioinform. 2012, 1, 009–015.
  • Merlin, C.; Masters, M.; McAteer, S.; Coulson, A. Why Is Carbonic Anhydrase Essential to Escherichia coli? J. Bacteriol. 2003, 185, 6415–6424. DOI: 10.1128/jb.185.21.6415-6424.2003.
  • Clark, D.; Rowlett, R. S.; Coleman, J. R.; Klessig, D. F. Complementation of the Yeast Deletion Mutant DeltaNCE103 by Members of the Beta Class of Carbonic Anhydrases Is Dependent on Carbonic Anhydrase Activity Rather than on Antioxidant Activity. Biochem. J. 2004, 379, 609–615. DOI: 10.1042/bj20031711.
  • Mitsuhashi, S.; Ohnishi, J.; Hayashi, M.; Ikeda, M. A Gene Homologous to β-Type Carbonic Anhydrase is Essential for the Growth of Corynebacterium glutamicum under Atmospheric Conditions. Appl. Microbiol. Biotechnol. 2004, 63, 592–601. DOI: 10.1007/s00253-003-1402-8.
  • Rowlett, R. S. Structure and Catalytic Mechanism of the β-Carbonic Anhydrases. Biochim. Biophys. Acta 2010, 1804, 362–373. DOI: 10.1016/j.bbapap.2009.08.002.
  • Chapuis‐Lardy, L. Y. D. I. E.; Wrage, N.; Metay, A.; Chotte, J. L.; Bernoux, M. Soils, a Sink for N2O? A Review. Global Change Biol. 2007, 13, 1–17. DOI: 10.1111/j.1365-2486.2006.01280.x.
  • Dorodnikov, M.; Blagodatskaya, E.; Blagodatsky, S.; Marhan, S.; Fangmeier, A.; Kuzyakov, Y. Stimulation of Microbial Extracellular Enzyme Activities by Elevated CO2 Depends on Soil Aggregate Size. Glob. Chan. Biol. 2009, 15, 1603–1614. DOI: 10.1111/j.1365-2486.2009.01844.x.
  • Schimel, J. P.; Cleve, K. V.; Cates, R. G.; Clausen, T. P.; Reichardt, P. B. Effects of Balsam Poplar (Populus balsamifera) Tannins and Low Molecular Weight Phenolics on Microbial Activity in Taiga Floodplain Soil: Implications for Changes in N Cycling during Succession. Can. J. Bot. 1996, 74, 84–90. DOI: 10.1139/b96-012.
  • Joanisse, G. D.; Bradley, R. L.; Preston, C. M.; Munson, A. D. Soil Enzyme Inhibition by Condensed Litter Tannins May Drive Ecosystem Structure and Processes: The Case of Kalmia angustifolia. New Phytol. 2007, 175, 535–546.
  • Ludwig, J.; Meixner, F. X.; Vogel, B.; Förstner, J. Soil-Air Exchange of Nitric Oxide: An Overview of Processes, Environmental Factors, and Modeling Studies. Biogeochemistry 2001, 52, 225–257. DOI: 10.1023/A:1006424330555.
  • Dilustro, J. J.; Collins, B.; Duncan, L.; Crawford, C. Moisture and Soil Texture Effects on Soil CO2 Efflux Components in Southeastern Mixed Pine Forests. Forest Ecol. Manag. 2005, 204, 87–97. DOI: 10.1016/j.foreco.2004.09.001.
  • Liang, J. I. N.; Chang-Yi, L. U.; Yong, Y. E.; Gong-Fu, Y. E. Soil Respiration in a Subtropical Mangrove Wetland in the Jiulong River Estuary, China. Pedosphere 2013, 23, 678–685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.