246
Views
3
CrossRef citations to date
0
Altmetric
Articles

Electrochemical nucleic acid hybridization biosensor based on poly(L-Aspartic acid)-modified electrode for the detection of short oligonucleotide sequences related to hepatitis C virus 1a

ORCID Icon, , &

Reference

  • World Health Organization, Hepatitis C Key Facts. 2018. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed July 18, 2018).
  • Bukh, J. The History of Hepatitis C Virus (HCV): Basic Research Reveals Unique Features in Phylogeny, Evolution and the Viral Life Cycle with New Perspectives for Epidemic Control. J. Hepatol. 2016, 65, S2–S21. DOI: 10.1016/j.jhep.2016.07.035.
  • Freiman, J. M.; Tran, T. M.; Schumacher, S. G.; White, L. F.; Ongarello, S.; Cohn, J.; Easterbrook, P. J.; Linas, B. P.; Denkinger, C. M. Hepatitis C Core Antigen Testing for Diagnosis of Hepatitis C Virus Infection: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2016, 165, 345–355. DOI: 10.7326/M16-0065.
  • dos Santos Riccardi, C.; Kranz, C.; Kowalik, J.; Yamanaka, H.; Mizaikoff, B.; Josowicz, M. Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes. Anal. Chem. 2008, 80, 237–245. DOI: 10.1021/ac701613t.
  • Diculescu, V. C.; Oliveira-Brett, A. M. In Situ Electrochemical Evaluation of dsDNA Interaction with the Anticancer Drug Danusertib Nitrenium Radical Product Using the DNA-Electrochemical Biosensor. Bioelectrochemistry. 2016, 107, 50–57. DOI: 10.1016/j.bioelechem.2015.10.004.
  • Brasil de Oliveira Marques, P. R.; Lermo, A.; Campoy, S.; Yamanaka, H.; Barbé, J.; Alegret, S.; Pividori, M. I. Double-Tagging Polymerase Chain Reaction with a Thiolated Primer and Electrochemical Genosensing Based on Gold Nanocomposite Sensor for Food Safety. Anal. Chem. 2009, 81, 1332–1339. DOI: 10.1021/ac801736b.
  • Gan, X.; Zhao, H.; Chen, S.; Quan, X. Electrochemical DNA Sensor for Specific Detection of Picomolar Hg(ii) Based on Exonuclease III-Assisted Recycling Signal Amplification. Analyst. 2015, 140, 2029–2036. DOI: 10.1039/C5AN00082C.
  • Cui, M.; Wang, Y.; Wang, H.; Wu, Y.; Luo, X. A Label-Free Electrochemical DNA Biosensor for Breast Cancer Marker BRCA1 Based on Self-Assembled Antifouling Peptide Monolayer. Sens. Actuators B Chem. 2017, 244, 742–749. DOI: 10.1016/j.snb.2017.01.060.
  • Jampasa, S.; Wonsawat, W.; Rodthongkum, N.; Siangproh, W.; Yanatatsaneejit, P.; Vilaivan, T.; Chailapakul, O. Electrochemical Detection of Human Papillomavirus DNA Type 16 Using a Pyrrolidinyl Peptide Nucleic Acid Probe Immobilized on Screen-Printed Carbon Electrodes. Biosens. Bioelectron. 2014, 54, 428–434. DOI: 10.1016/j.bios.2013.11.023.
  • Chen, P. Q.; Liang, Q. N.; Huang, T. S.; Liu, T. C.; Li, M. A Simple, Rapid, and Highly Sensitive Electrochemical DNA Sensor for the Detection of ot Alpha- and beta-Thalassemia in China. J. Clin. Lab. Anal. 2016, 30, 719–726. DOI: 10.1002/jcla.21927.
  • Zhang, Y.; Zhang, K.; Ma, H. Electrochemical DNA Biosensors Based on Gold Nanoparticles/Cysteamine/Poly (Glutamic Acid) Modified Electrode. Am. J. Biomed. Sci. 2009, 1, 115–125. DOI: 10.5099/aj090200115.
  • Geno, P. W.; Ravichandran, K.; Baldwin, R. P. Chemically Modified Carbon Paste Electrodes. J Electroanalytical Chem. Interfacial Electrochem. 1985, 183, 155–166. DOI: 10.1016/0368-1874(85)85488-5.
  • Chitravathi, S.; Swamy, B. E. K.; Mamatha, G. P.; Sherigara, B. S. Simultaneous Electrochemical Determination of Dopamine and Ascorbic Acid Using Poly (l-Serine) Modified Carbon Paste Electrode. J. Mol. Liq. 2011, 160, 193–199. DOI: 10.1016/j.molliq.2011.03.019.
  • Donmez, S.; Arslan, F.; Arslan, H. A Nucleic Acid Biosensor for Detection of Hepatitis C Virus Genotype 1a Using Poly(L-Glutamic Acid)-Modified Electrode. Appl. Biochem. Biotechnol. 2015, 176, 1431–1444. DOI: 10.1007/s12010-015-1655-6.
  • Gilbert, O.; Chandra, U.; Char, M. P.; Swamy, B. E. K.; Char, M. P.; Nagaraj, C.; Sherigard, B. S. Poly (Alanine) Modified Carbon Paste Electrode for Simultaneous Detection of Dopamine and Ascorbic Acid. Int. J. Electrochem. Sci. 2008, 3, 1186–1195.
  • Sun, W.; Zhang, Y.; Ju, X.; Li, G.; Gao, H.; Sun, Z. Electrochemical Deoxyribonucleic Acid Biosensor Based on Carboxyl Functionalized Graphene Oxide and poly-L-Lysine Modified Electrode for the Detection of Tlh Gene Sequence Related to vibrio parahaemolyticus. Anal. Chim. Acta. 2012, 752, 39–44. DOI: 10.1016/j.aca.2012.09.009.
  • Santos, D. P.; Zanoni, M. V. B.; Bergamini, M. F.; Chiorcea-Paquim, A. M.; Diculescu, V. C.; Brett, A. M. O. Poly(Glutamic Acid) Nanofibre Modified Glassy Carbon Electrode: Characterization by Atomic Force Microscopy, Voltammetry and Electrochemical Impedance. Electrochim. Acta. 2008, 53, 3991–4000. DOI: 10.1016/j.electacta.2007.08.072.
  • Zhang-Yu, Y. U.; Xiao-Chun, L. I.; Xue-Liang, W.; Jinjin, L.; Ke-Wei, C. A. O. Studies on the Electrochemical Behaviors of Epinephrine at a Poly(l-Aspartic Acid) Modified Glassy Carbon Electrode and Its Analytical Application. Int. J. Electrochem. Sci. 2011, 6, 3890–3890.
  • Lai, R. Y.; Seferos, D. S.; Heeger, A. J.; Bazan, G. C.; Plaxco, K. W. Comparison of the Signaling and Stability of Electrochemical DNA Sensors Fabricated from 6- or 11-Carbon Self-Assembled Monolayers. Langmuir. 2006, 22, 10796–10800. DOI: 10.1021/la0611817.
  • Li, J.; Zhang, X. Fabrication of Poly(Aspartic Acid)-Nanogold Modified Electrode and Its Application for Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid. AJAC. 2012, 3, 195. DOI: 10.4236/ajac.2012.33028.
  • Farabullini, F.; Lucarelli, F.; Palchetti, I.; Marrazza, G.; Mascini, M. Disposable Electrochemical Genosensor for the Simultaneous Analysis of Different Bacterial Food Contaminants. Biosens. Bioelectron. 2007, 22, 1544–1549. DOI: 10.1016/j.bios.2006.06.001.
  • Benvidi, A.; Firouzabadi, A. D.; Moshtaghiun, S. M.; Mazloum-Ardakani, M.; Tezerjani, M. D. Ultrasensitive DNA Sensor Based on Gold Nanoparticles/Reduced Graphene Oxide/Glassy Carbon Electrode. Anal. Biochem. 2015, 484, 24–30. DOI: 10.1016/j.ab.2015.05.009.
  • Ni, J.; Yang, W.; Wang, Q.; Luo, F.; Guo, L.; Qiu, B.; Lin, Z.; Yang, H. Homogeneous and Label-Free Electrochemiluminescence Aptasensor Based on the Difference of Electrostatic Interaction and Exonuclease-Assisted Target Recycling Amplification. Biosens. Bioelectron. 2018, 105, 182–187. DOI: 10.1016/j.bios.2018.01.043.
  • Benvidi, A.; Firouzabadi, A. D.; Tezerjani, M. D.; Moshtaghiun, S. M.; Mazloum-Ardakani, M.; Ansarin, A. A Highly Sensitive and Selective Electrochemical DNA Biosensor to Diagnose Breast Cancer. Electroanal. Chem. 2015, 750, 57–64. DOI: 10.1016/j.jelechem.2015.05.002.
  • Yesil, M.; Donmez, S.; Arslan, F. Development of an Electrochemical DNA Biosensor for Detection of Specific Mycobacterium tuberculosis Sequence Based on Poly(L-Glutamic Acid) Modified Electrode. J. Chem. Sci. 2016, 128, 1823–1829. DOI: 10.1007/s12039-016-1159-0.
  • Pournaghi-Azar, M. H.; Ahour, F.; Hejazi, M. S. Direct Detection and Discrimination of Double-Stranded Oligonucleotide Corresponding to Hepatitis C Virus Genotype 3a Using an Electrochemical DNA Biosensor Based on Peptide Nucleic Acid and Double-Stranded DNA Hybridization. Anal. Bioanal. Chem. 2010, 397, 3581–3587. DOI: 10.1007/s00216-010-3875-5.
  • Tao, W.; Lin, P.; Liu, H.; Ke, S.; Zeng, X. A Rapid, Label-Free and Impedimetric DNA Sensor Based on PNA-Modified Nanoporous Gold Electrode. Int. J. Electrochem. Sci. 2017, 12, 10511–10523. DOI: 10.20964/2017.11.38.
  • Gu, H.; Su, X. d.; Loh, K. P. Electrochemical Impedance Sensing of DNA Hybridization on Conducting Polymer Film-Modified Diamond. J. Phys. Chem. B. 2005, 109, 13611–13618. DOI: 10.1021/jp050625p.
  • Daggumati, P.; Matharu, Z.; Seker, E. Effect of Nanoporous Gold Thin Film Morphology on Electrochemical DNA Sensing. Anal. Chem. 2015, 87, 8149–8156. DOI: 10.1021/acs.analchem.5b00846.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.