242
Views
15
CrossRef citations to date
0
Altmetric
Articles

Kinetic and thermodynamic investigations of cell-wall degrading enzymes produced by Aureobasidium pullulans via induction with orange peels: application in lycopene extraction

&

References

  • Saeid, J. B.; Eun, M. S. A.; Sagor, A.; Rahman, M. S.; Akter, M.; Ahmed, J. Effects of Extraction and Purification Methods on Degradation Kinetics and Stability of Lycopene from Watermelon under Storage Conditions. Food Sci. 2016, 81, 2630–2638.
  • Poojary, M. M.; Passamonti, P. Optimization of Extraction of High Purity All-Trans-Lycopene from Tomato Pulp Waste. Food Chem. 2015, 188, 84–91. DOI: 10.1016/j.foodchem.2015.04.133.
  • Choudhari, S. M.; Ananthanarayan, L. Enzyme Aided Extraction of Lycopene from Tomato Tissues. Food Chem. 2007, 102, 77–81. DOI: 10.1016/j.foodchem.2006.04.031.
  • Sinha, K.; Chowdhury, S.; Das, P.; Saha, S.; Datta, S. Modeling of Microwave-Assisted Extraction of Natural Dye from Seeds of Bixa orellana (Annatto) Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Ind. Crops. Prod. 2013, 41, 165–171. DOI: 10.1016/j.indcrop.2012.04.004.
  • Sharma, S. K.; Maguer, M. Lycopene in Tomatoes and Tomato Pulp Fractions. Ital. J. Food. Sci. 1996, 8, 107–113. https://doi.org/https://doi.org/10.1016/0963-9969(96)00029-4.
  • Lavecchia, R.; Zuorro, A. Improved Lycopene Extraction from Tomato Peels Using Cell-Wall Degrading Enzymes. Eur. Food Res. Technol. 2008, 228, 153–158.
  • Guo, L.; Xie, M. Y.; Yan, A. P.; Wan, Y. Q.; Wu, Y. M. Simultaneous Determination of Five Synthetic Antioxidants in Edible Vegetable Oil by GC–MS. Anal. Bioanal. Chem. 2006, 386, 1881–1887. DOI: 10.1007/s00216-006-0738-1.
  • Harris, W. M.; Spurr, A. R. Chromoplasts of Tomato Fruits. Ultrastructure of Low‐Pigment and High‐Beta Mutant Carotene Analyses. Am. J. Bot. 1969, 56, 380–389.
  • Lavecchia, R. Zuorro, A. Stability and Degradation Kinetics of Lycopene in Vegetable Oils. Int. Rev. Chem. Eng. 2009, 1, 190–196.
  • Rahimpour, S.; Dinani, S. T. Lycopene Extraction from Tomato Processing Waste Using Ultrasound and Cell-Wall Degrading Enzymes. Food Measure. 2018, 12, 2394–2403. DOI: 10.1007/s11694-018-9856-7.
  • Rozzi, N. L.; Singh, R. K.; Vierling, R. A.; Watkins, B. A. Supercritical Fluid Extraction of Lycopene from Tomato Processing by-Products. J. Agric. Food Chem. 2002, 50, 2638–2643. DOI: 10.1021/jf011001t.
  • Sabio, E.; Lozano, M.; Montero de Espinosa, V.; Mendes, R. L.; Pereira, A. P.; Palavra, A. F.; Coelho, J. A. Lycopene and β-Carotene Extraction from Tomato Processing Waste Using Supercritical CO2. Ind. Eng. Chem. Res. 2003, 42, 6641–6646. DOI: 10.1021/ie0301233.
  • Shirsath, S. R. R.; Sonawane, S. H. H.; Gogate, P. R. R. Intensification of Extraction of Natural Products Using Ultrasonic Irradiations—A Review of Current Status. Chem. Eng. Process. Process Intensif. 2012, 53, 10–23. DOI: 10.1016/j.cep.2012.01.003.
  • Ismail, A. S. Utilization of Orange Peels for the Production of Multienzyme Complexes by Some Fungal Strains. Process Biochem. 1996, 31, 645–650. DOI: 10.1016/S0032-9592(96)00012-X.
  • Ademakinwa, A. N.; Ayinla, Z. A.; Omitogun, O. G.; Agboola, F. K. Preparation, Characterization and Optimization of Cross-Linked Fructosyltransferase Aggregates for the Production of Prebiotic Fructooligosaccharides. Bta. 2018, 99, 417–435. DOI: 10.5114/bta.2018.79972.
  • Ladole, M. R.; Nair, R. R.; Bhudata, Y. D.; Amritkar, V. D.; Pandit, A. B. Synergistic Effect of Ultrasonication and Co-Immobilized Enzymes on Tomato Peels for Lycopene Extraction. Ultrason. Sonochem. 2017, 48, 453–462. DOI: 10.1016/j.ultsonch.2018.06.013.
  • Ladole, M. R.; Muley, A. B.; Patil, I. D.; Talib, M.; Parate, V. R. Immobilization of Tropizyme-P on Amino-Functionalized Magnetic Nanoparticles for Fruit Juice Clarification. J. Biochem. Technol. 2015, 5, 838–845.
  • Oliveira, R. L.; da Silva, O. S.; Converti, A.; Porto, T. S. Thermodynamic and Kinetic Studies on Pectinase Extracted from Aspergillus aculeatus: Free and Immobilized Enzyme Entrapped in Alginate Beads. Int. J. Biol. Macromol. 2018, 115, 1088–1093. DOI: 10.1016/j.ijbiomac.2018.04.154.
  • Talekar, S.; Joshi, A.; Kambale, S.; Jadhav, S.; Nadar, S.; Ladole, M. A Tri-Enzyme Magnetic Nanobiocatalyst with One Pot Starch Hydrolytic Activity. Chem. Eng. J. 2017, 325, 80–90. DOI: 10.1016/j.cej.2017.05.054.
  • Pal, A.; Khanum, F. Covalent Immobilization of Xylanase on Glutaraldehyde Activated Alginate Beads Using Response Surface Methodology: Characterization of Immobilized Enzyme. Process Biochem. 2011, 46, 1315–1322. DOI: 10.1016/j.procbio.2011.02.024.
  • Kumar, S.; Dwevedi, A.; Kayastha, A. M. Immobilization of Soybean (Glycine max) Urease on Alginate and Chitosan Beads Showing Improved Stability: Analytical Applications. J. Mol. Catal. B Enzym. 2009, 58, 138–145. DOI: 10.1016/j.molcatb.2008.12.006.
  • Tayefi-Nasrabadi, H.; Asadpour, R. Effect of Heat Treatment on Buffalo (Bubalus bubalis) Lactoperoxidase Activity in Raw Milk. J. Biol. Sci. 2008, 8, 1310–1315. DOI: 10.3923/jbs.2008.1310.1315.
  • Ademakinwa, A. N.; Agboola, F. K. Biochemical Characterization and Kinetics of a Purified Yellow Laccase from Aureobasidium pullulans (De Bary) Isolated from Soil Containing Decayed Plant Matter. J. Genet. Eng. Biotechnol. 2016, 14, 143–151. DOI: 10.1016/j.jgeb.2016.05.004.
  • Deshpande, M. S.; Rale, V. B.; Lynch, J. M. Aureobasidium pullulans in Applied Microbiology: A Status Report. Enzyme Microb. Technol. 1992, 14, 514–527. DOI: 10.1016/0141-0229(92)90122-5.
  • Okagbue, R. N.; Mwenje, E.; Kudanga, T.; Siwela, M.; Sibanda, T. Isolation of Aureobasidium pullulans from Zimbabwean Sources and Glucosidase Activities of Selected Isolates. S. African J. Bot. 2001, 67, 157–160. 2001, DOI: 10.1016/S0254-6299(15)31114-5.
  • Kudanga, T.; Mwenje, E. Extracellular Cellulase Production by Tropical Isolates of Aureobasidium pullulans. Can. J. Microbiol. 2005, 51, 773–776. DOI: 10.1139/w05-053.
  • Ademakinwa, A. N.; Ayinla, Z. A.; Agboola, F. K. Strain Improvement and Statistical Optimization as a Combined Strategy for Improving Fructosyltransferase Production by Aureobasidium pullulans NAC8. J. Genet. Eng. Biotechnol. 2017, 15, 341–353.
  • Ademakinwa, A. N.; Agboola, F. K. Bioremediation of Textile Dye Solutions, Textile Dye Mixtures and Textile Effluents by Laccase from Aureobasidium pullulans (De Bary) G. Arnaud (1918) (Fungi ascomycota). Braz. J. Biol. Sci. 2017, 2, 253–262.
  • Li, P.; Xia, J.; Shan, Y.; Nie, Z.; Su, D.; Gao, Q.; Zhang, C.; Ma, Y. Optimizing Production of Pectinase from Orange Peel by Penicillium oxalicum PJ02 Using Response Surface Methodology. Waste Biomass Valor. 2015, 6, 13–22. DOI: 10.1007/s12649-014-9317-4.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Bailey, M. J.; Biely, P.; Poutanen, K. Interlaboratory Testing of Methods for Assay of Xylanase Activity. J. Biotechnol. 1992, 23, 257–270. DOI: 10.1016/0168-1656(92)90074-J.
  • Ghose, T. Measurement of Cellulase Activities. Pure Appl. Chem. 1987, 59, 257–268. DOI: 10.1351/pac198759020257.
  • Quadri, H.,O.; Ademakinwa, N. A.; Adejumo, A. L.; Agboola, F. K. Partial Purification and Characterization of Cellulolytic Enzyme from Bacillus pantothenicus Isolated from a Dumpsite. Res. Rev. J. Microbiol Biotechnol. 2017, 6, 4–11.
  • Patil, S. R.; Dayanand, A. Optimization of Process for the Production of Fungal Pectinases from Deseeded Sunflower Head in Submerged and Solid-State Conditions. Bioresour. Technol. 2006, 97, 2340–2344.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Ragu, S.; Pennathur, E. Enhancing the Stability of a Carboxylesterase by Entrapment in Chitosan Coated Alginate Beads. Turk. J. Biol. 2018, 42, 308–317. DOI: 10.3906/biy-1805-28.
  • Gohel, S. D.; Singh, S. P. Purification Strategies, Characteristics and Thermodynamic Analysis of a Highly Thermostable Alkaline Protease from a Salt-Tolerant Alkaliphilic Actinomycete, Nocardiopsis alba OK-5. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 889–890, 61–68. DOI: 10.1016/j.jchromb.2012.01.031.
  • Zuorro, A.; Lavecchia, R. Mild Enzymatic Method for the Extraction of Lycopene from Tomato Paste. Biotechnol. Biotechnol. Equip. 2010, 24, 1854–1857. DOI: 10.2478/V10133-010-0028-0.
  • Fish, W. W.; Perkins-Veazie, P.; Collins, J. K. A Quantitative Assay for Lycopene That Utilizes Reduced Volumes of Organic Solvents. J. Food Comp. Anal. 2002, 15, 309–317. DOI: 10.1006/jfca.2002.1069.
  • Ahmed, I.; Zia, M. A.; Hussain, A. M.; Akram, Z.; Naveed, M. T.; Nowrouzi, A. Bioprocessing of Citrus Waste Peel for Induced Pectinase Production by Aspergillus niger; Its Purification and Characterization. J. Rad. Res. Appl. Sci. 2016, 9, 148–154. DOI: 10.1016/j.jrras.2015.11.003.
  • Amin, F.; Bhatti, H. N.; Bilal, M.; Asgher, M. Improvement of Activity, Thermostability and Fruit Juice Clarification Characteristics of Fungal Exo-Polygalacturonase. Int. J. Biol. Macromol. 2017, 95, 974–984. DOI: 10.1016/j.ijbiomac.2016.10.086.
  • Abdel Wahab, W. A.; Karam, E. A.; Hassan, M. E.; Kansoh, A. L.; Esawy, M. A.; Awad, G. E. A. Optimization of Pectinase Immobilization on Grafted Alginate-Agar Gel Beads by 24 Full Factorial CCD and Thermodynamic Profiling for Evaluating of Operational Covalent Immobilization. Int. J. Biol. Macromol. 2018, 113, 159–170. DOI: 10.1016/j.ijbiomac.2018.02.086.
  • Melikoglu, M.; Lin, C. S. K.; Webb, C. Kinetic Studies on the Multi-Enzyme Solution Produced via Solid State Fermentation of Waste Bread by Aspergillus awamori. Biochem. Eng. J. 2013, 80, 76–82. DOI: 10.1016/j.bej.2013.09.016.
  • Hernández-Martínez, R.; Gutiérrez-Sánchez, G.; Bergmann, C. W.; Loera-Corral, O.; Rojo-Domínguez, A.; Huerta-Ochoa, S.; Regalado-González, C.; Prado-Barragán, L. A. Purification and Characterization of a Thermodynamic Stable Serine Protease from Aspergillus fumigatus. Process Biochem. 2011, 46, 2001–2006. DOI: 10.1016/j.procbio.2011.07.013.
  • Souza, P. M.; Aliakbarian, B.; Ximenes, E.; Filho, F.; Oliveira, P.; Pessoa, A.; Converti, A. Kinetic and Thermodynamic Studies of a Novel Acid Protease from Aspergillus foetidus. Int. J. Biol. Macromol. 2015, 81, 17–21. DOI: 10.1016/j.ijbiomac.2015.07.043.
  • Akanbi, C. T.; Oludemi, F. O. Effect of Processing and Packaging on the Lycopene Content of Tomato Products. Int. J. Food Prop. 2004, 7, 139–152. DOI: 10.1081/JFP-120024173.
  • Gostincar, C.; Robin, A. G.; Tina, K.; Silva, S.; Martina, T.; Janja, Z.; Polona, Z.; Martin, G.; Hui, S.; James, H.; et al. Genome Sequencing of Four Aureobasidium pullulans Varieties: Biotechnological Potential, Stress Tolerance and Description of New Species. BMC Genomics 2014, 15, 1–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.