310
Views
9
CrossRef citations to date
0
Altmetric
Articles

Influences of carbohydrate, nitrogen, and phosphorus sources on the citric acid production by fungal endophyte Aspergillus fumigatus P3I6

, &

References

  • Magnuson, J. K.; Lasure, L. L. Organic Acid Production by Filamentous Fungi. In Advance in Fungal Biotechnology for Industry, Agriculture, and Medicine; Tkacz, J. S., Lange, L. Eds.; Kluwer Academic/Plenum Publishers: New York, NY, 2004; pp. 307–340.
  • Sauer, M.; Porro, D.; Mattanovich, D.; Branduardi, P. Microbial Production of Organic Acids: Expanding the Markets. Trends Biotechnol. 2008, 26, 100–108.
  • Alvarez, V. F.; Gonzalez, A. C.; Torres, N. V. Metabolism of Citric Acid Production by Aspergillus niger: Model Definition, Steady State Analysis and Constrained Optimization of the Citric Acid Production Rate. Biotechnol. Bioeng. 2000, 70, 82–108.
  • Burgstaller, W.; Schinner, F. Leaching of Metals with Fungi. J. Biotechnol. 1993, 27, 91–116.
  • King, R. D.; Cheetham, P. S. J. Food Biotechnology. Vol. 1; Elsevier Applied Science Publishers Ltd: London, 1987; pp. 273–307
  • Lesniak, W.; Pietkiewicz, J.; Podgorski, W. Citric Acid Fermentation from Starch and Dextrose Syrups by a Trace Metal Resistant Mutant of Aspergillus niger. Biotechnol. Lett. 2002, 24, 1065–1067.
  • Rohr, M.; Kubicek, C. P.; Kominek, J. Citric Acid in Biotechnology, Volume III: Biomass, Microorganisms for Special Applications, Microbial Products I, Energy from Renewable Resources. In Rehmand, H. J., Reed, G., Eds.; VCH Publishers: Weinheinm, Germany, 1983; Vol. 3, pp. 331–375.
  • Jennings, D. H.; Lysek, G. Fungal Biology: Understanding the Fungal Lifestyle. Vol. 1. BIOS Scientific Publishers Limited: Oxford, 1996.
  • Li, A.; Punt, P. Industrial Production of Organic Acids by Fungi. In Applications of Microbial Engineering; Gupta, V., Schmill, M., Mazutti, M., Mäki, M., Tuohy, M., Eds.; Taylor and Francis Group: London, 2013; pp. 52–74.
  • Karaffa, L.; Sándor, E.; Fekete, E.; Szentirmai, A. A. The Biochemistry of Citric Acid Accumulation by Aspergillus niger. Acta. Microbiol. Immunol. Hung. 2001, 48, 429–440.
  • Berovic, M.; Legisa, M. Citric Acid Production. Biotechnol. Annu. Rev. 2007, 13, 303–343.
  • Lofty, W. A.; Ghanem, K. M.; El Helow, E. R. Citric Acid Production by a Novel Aspergillus niger Isolate: Optimization of Process Parameters through Statistical Experimental Designs. Bioresour. Technol. 2007, 98, 3470–3477.
  • Tran, C. T.; Sly, L. I.; Mitchel, D. A. Selection of a Strain Aspergillus for the Production of Citric Acid Fermentation from Pineapple Waste in Solid State Fermentation. World J. Microbiol. Biotechnol. 1998, 14, 399–404.
  • Finogenova, T. V.; Morgunov, I. G.; Kamzolova, S. V.; Chernyavskaya, O. G. Organic Acid Production by the Yeast Yarrowia lipolytica: A Review of Prospects. Appl. Biochem. Microbiol. 2005, 41, 418–425.
  • Francielo, V.; Patricia, M.; Fernanda, S. A. Apple Pomace: A Versatile Substrate for Biotechnological Applications. Crit. Rev. Biotechnol. 2008, 28, 1–12.
  • Hallmann, J.; Berg, G.; Schulz, B. Isolation Procedures for Endophytic Microorganisms. Springer Brelin Heidelberg: New York, NY, 2007; pp. 299–319.
  • Dezam, A. P. G.; Vasconcellos, V. M.; Lacava, P. T.; Farinas, C. S. Microbial Production of Organic Acids by Endophytic Fungi. Biocat. Agri. Biotech. 2017, 11, 282–287.
  • Gardes, M.; Bruns, T. D. ITS Primers with Enhanced Specificity for Basidiomycetes—Application to the Identification of Mycorrhizae and Rusts. Mol. Ecol. 1993, 2, 113–118.
  • White, T. J.; Bruns, T.; Lee, S.; Taylor, J. W. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J., Eds.; PCR Protocols: A Guide to Methods and Applications. Academic Press: New York, NY, 1990; pp. 315–322.
  • Montgomery, D. C.; Runger, G. C. Applied Statistics and Probability for Engineers. John Wiley & Sons, Inc.: New York, NY, 2011; p. 768.
  • Box, G. E. P.; Wilson, K. B. On the Experimental Attainment of Optimum Conditions: Series B (Methodological). J. Royal Stat. Soc. 1951, 13, 1–45.
  • Box, G. E. P.; Hunter, J. S. Statistics for Experiments. Wiley: New York, NY, 1978; pp. 91–334.
  • Zheng, Z. M.; Hu, Q. I.; Hao, J.; Xu, F.; Guo, N. N.; Sun, Y.; Liu, D. H. Statistical Optimization of Culture Conditions for 1,3-Propanediol by Klebsiella pneumoniae AC 15 via Central Composite Design. Bioresour. Technol. 2008, 99, 1052–1056.
  • Soccol, C.; Vandenberghe, L.; Rodrigues, C.; Pandey, A. New Perspectives for Citric Acid Production and Application. Food Technol. Biotechnol. 2006, 44, 141–165.
  • Betiku, E.; Adesina, O. A. Statistical Approach to the Optimization of Citric Acid Production Using Filamentous Fungus Aspergillus niger Grown on Sweet Potato Starch Hydrolysate. Biomass Bioenergy 2013, 55, 350–354.
  • Barrington, S.; Kim, J. W. Response Surface Optimization of Medium Components for Citric Acid Production by Aspergillus niger NRRL 567 Grown in Peat Moss. Biores. Tech. 2008, 99, 368–377.
  • Roukas, T.; Kotzekidou, P. Influence of Some Trace Metals and Stimulants on Citric Acid Production from Brewery Wastes by Aspergillus niger. Enzyme Microb. Technol. 1987, 9, 291–294.
  • Soccol, C. R.; Vandenberghe, L. P. S. Overview of Applied Solid-State Fermentation in Brazil. Biochem. Eng. J. 2003, 13, 205–218.
  • Yokoya, F. Citric Acid Production. In Krause, J.; Fleisher, O. (eds.), Industrial Fermentation Series. Campinas: SP, Brazil, 1992; pp. 1–82.
  • Dasgupta, J.; Nasim, S.; Khan, A. W.; Vora, V. C. Production of Citric Acid in Molasses Medium: Effect of Addition of Lower Alcohols during Fermentation. J. Microbiol. Biotechnol. 1994, 9, 123–125.
  • Max, B.; Salgado, J. M.; Rodriguez, N.; Cortes, S.; Converti, A.; Dominguez, J. M. Biotechnological Production of Citric Acid. Braz. J. Microbiol. 2010, 41, 862–875.
  • Vandenberghe, L. P.; Soccol, C. R.; Pandey, A.; Lebeault, J. Microbial Production of Citric Acid. Braz. Arch. Biol. Technol. 1999, 42, 263–276.
  • Alberto, F.; Bignon, C.; Sulzenbacher, G.; Henrissat, B.; Czjzek, M. The Three Dimensional Structure of Invertase (β-Fructosidase) from Thermotoga maritima Reveals a Bimodular Arrangement and an Evolutionary Relationship between Retaining and Inverting Glycosidases. J. Biol. Chem. 2004, 279, 18903–18910.
  • Hossain, M.; Brooks, J. D.; Maddox, I. S. The Effect of the Sugar Source on Citric Acid Production by Aspergillus niger. Appl. Microbiol. Biotechnol. 1984, 19, 393–397.
  • Grewal, H. S.; Kalra, K. L. Fungal Production of Citric Acid. Biotechnol. Adv. 1995, 13, 209–234.
  • Kubicek, C. P.; Röhr, M.; Rehm, H. J. Citric Acid Fermentation. Crit. Rev. Biotechnol. 1985, 3, 331–373.
  • Themelis, D. G.; Tzanavaras, P. D. Reagent-Injection Spectrophotometric Determination of Citric Acid in Beverages and Pharmaceutical Formulations Based on Its Inhibitory Effect on the Iron (III) Catalytic Oxidation of 2,4-Diaminophenol by Hydrogen Peroxide. Anal. Chim. Acta. 2001, 428, 23–30.
  • El-Gamal, M. S.; Desouky, S. E.; Abdel-Rahman, M. A.; Khattab, A. M. Optimization of Citric Acid Production from Sugar Cane Molasses Using a Fungal Isolate, Aspergillus fumigatus NA-1. Egypt. J. Biomed. Sci. 2018, 52, 1–24.
  • Sarkar, N.; Aikat, K. Aspergillus fumigatus NITDGPKA3 Provides for Increased Cellulose Production. Int. J. Chem. Eng. 2014, 2014, 1–9.
  • Manjit, Yadav, A.; Aggarwal, N. K.; Kumar, K.; Kumar, A. Tannase Production by Aspergillus fumigatus MA under Solid-State Fermentation. World J. Microbiol. Biotechnol. 2008, 24, 3023–3030.
  • Furtado, N. A. J. C.; Fonseca, M. J.; Bastos, J. K. The Potential of an Aspergillus fumigatus Brazilian Strain to Produce Antimicrobial Secondary Metabolites. Braz. J. Microbiol. 2005, 36, 357–362.
  • Kautola, H.; Rymowicz, W.; Linko, Y. Y.; Linko, P. The Utilization of Beet Molasses in Citric Acid Production with Yeast. Sci. Des. Aliments 1992, 12, 383–392.
  • Maddox, I. S.; Spencer, K.; Greenwood, J. M.; Dawson, M. W.; Brooks, J. D. Production of Citric Acid from Sugars Present in Wood Hemicellulose Using Aspergillus niger and Saccharomycopsis Lipolytica. Biotechnol. Lett. 1985, 7, 815–818.
  • Ogawa, T.; Fazeli, A. Additive Effect of Ferrocyanide Treatment and Step Change of pH on Citric Acid Production from Iranian Beet Molasses with Aspergillus niger. J. Ferment. Technol. 1976, 54, 63–66.
  • Yang, L.; Lubeck, M.; Souroullas, K.; Lubeck, P. S. Co-Consumption of Glucose and Xylose for Organic Acid Production by Aspergillus Carbonarius Cultivated in Wheat Straw Hydrolysate. World J. Microbiol. Biotech. 2016, 32, 57.
  • Suryanarayanan, T. S.; Thirunavukkarasu, N.; Govindarajulu, M. B.; Gopalan, V. Fungal Endophytes: An Untapped Source of Biocatalysts. Fungal Divers. 2012, 54, 19–30.
  • Zhang, H. W.; Song, Y. C.; Tan, R. X. Biology and Chemistry of Endophytes. Nat. Prod. Rep. 2006, 23, 753–771.
  • Strobel, G.; Daisy, B. Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.