148
Views
3
CrossRef citations to date
0
Altmetric
Articles

Analysis of polysaccharide hydrolases secreted by Aspergillus flavipes FP-500 on corn cobs and wheat bran as complex carbon sources

, , &

References

  • Bennett, J. W. Review Article. Mycotechnology: The Role of Fungi in Biotechnology. J. Biotechnol. 1998, 66, 101–107. DOI: 10.1016/S0168-1656(98)00133-3.
  • de Vries, R. P.; Riley, R.; Wiebenga, A.; Aguilar-Osorio, G.; Amillis, S.; Uchima, C. A.; Anderluh, G.; Asadollahi, M.; Askin, M.; Barry, K.; et al. Comparative Genomics Reveals High Biological Diversity and Specific Adaptations in the Industrially and Medically Important Fungal Genus Aspergillus. Genome Biol. 2017, 18, 28. DOI: 10.1186/s13059-017-1151-0.
  • de Vries, R. P.; Visser, J. Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiology and Molecular Biology Reviews 2001, 65, 497–522. DOI: 10.1128/MMBR.65.4.497-522.2001.
  • Tsukagoshi, N.; Kobayashi, T.; Kato, M. Regulation of the Amylolytic and (Hemi-)cellulolytic genes in Aspergilli. J. Gen. Appl. Microbiol. 2001, 47, 1–19. DOI: 10.2323/jgam.47.1.
  • Yuan, X. L.; van der Kaaij, R. M.; van den Hondel, C. A.; Punt, P. J.; van der Maarel, M. J. E. C.; Dijkhuizen, L.; Ram, A. F. J. Aspergillus niger Genome-Wide Analysis Reveals a Large Number of Novel Alpha-Glucan Acting Enzymes with Unexpected Expression Profiles. Mol. Genet. Genomics 2008, 279, 545–561. DOI: 10.1007/s00438-008-0332-7.
  • Martínez-Trujillo, A.; Arreguín-Rangel, L.; García-Rivero, M.; Aguilar-Osorio, G. Use of Fruit Residues for Pectinase Production by Aspergillus flavipes FP-500 and Aspergillus terreus FP-370. Lett. Appl. Microbiol. 2011, 53, 202–209. DOI: 10.1111/j.1472-765X.2011.03096.x.
  • Ström, K.; Schnürer, J.; Melin, P. Co-Cultivation of Antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, Evaluation of Effects on Fungal Growth and Protein Expression. FEMS Microbiol. Lett. 2005, 246, 119–124. DOI: 10.1016/j.femsle.2005.03.047.
  • Polizeli, M.; Rizzatti, A.; Monti, R.; Terenzi, H.; Jorge, J.; Amorim, D. Xylanases from Fungi Properties and Industrial Applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. DOI: 10.1007/s00253-005-1904-7.
  • Guillón, F.; Saulnier, L.; Robert, P.; Thibault, J. F.; Champ, M. Chemical Structure and Function of Cell Walls through Cereal Grains and Vegetable Samples. In Dietary Fibre Components and Functions; Salovaara, H., Gates, F., Tenkanen, M., Eds.; Wageningen Academic Publishers: Wageningen, 2007; pp. 31–64.
  • Sun, H.; Zhao, P.; Ge, X.; Xia, Y.; Hao, Z.; Liu, J.; Peng, M. Recent Advances in Microbial Raw Starch Degrading Enzymes. Appl. Biochem. Biotechnol. 2010, 160, 988–1003.
  • Mellon, J. E.; Cotty, P. J.; Dowd, M. K. Aspergillus flavus Hydrolases: Their Roles in Pathogenesis and Substrate Utilization. Appl. Microbiol. Biotechnol. 2007, 77, 497–504. DOI: 10.1007/s00253-007-1201-8.
  • Okeke, B. C.; Obi, S. K. Lignocellulose and Sugar Composition of Some Agro-Waste Materials. Bioresour. Technol. 1994, 47, 283–284. DOI: 10.1016/0960-8524(94)90192-9.
  • Kabel, M. A.; van den Borne, H.; Vincken, J. P.; Voragen, A. G. J.; Schols, H. A. Structural Differences of Xylans Affect Their Interaction with Cellulose. Carbohydr. Polym. 2007, 69, 94–105. DOI: 10.1016/j.carbpol.2006.09.006.
  • Betini, J.; Michelin, M.; Peixoto-Nogueira, S. D. C.; Jorge, S.; Terenzi, H.; Polizeli, M. L. T. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus Produced under Solid-State Fermentation and Their Application in Cellulose Pulp Bleaching. Bioprocess Biosyst. Eng. 2009, 32, 819–824. DOI: 10.1007/s00449-009-0308-y.
  • Sun, X.; Liu, Z.; Qu, Y.; Li, X. The Effects of Wheat Bran Composition on the Production of Biomass-Hydrolyzing Enzymes by Penicillium decumbens. Appl. Biochem. Biotechnol. 2008, 146, 119–128. DOI: 10.1007/s12010-007-8049-3.
  • Wolf-Márquez, V. E.; García-García, E.; García-Rivero, M.; Aguilar-Osorio, G.; Martínez-Trujillo, M. A. Batch and Pulsed Fed-Batch Cultures of Aspergillus flavipes FP-500 Growing on Lemon Peel at Stirred Tank Reactor. Appl. Biochem. Biotechnol. 2015, 177, 1201–1215. DOI: 10.1007/s12010-015-1807-8.
  • Liang, Y.; Pan, L.; Lin, Y. Analysis of Extracellular Proteins of Aspergillus oryzae Grown on Soy Sauce Koji. Biosci. Biotechnol. Biochem. 2009, 73, 192–195. DOI: 10.1271/bbb.80500.
  • Bouws, H.; Wattenberg, A.; Zorn, H. Fungal Secretome-Nature’s Toolbox for White Biotechnology. Appl. Microbiol. Biotechnol. 2008, 80, 381. DOI: 10.1007/s00253-008-1572-5.
  • Liu, D.; Li, J.; Zhao, S.; Zhang, R.; Wang, M.; Miao, Y.; Shen, Y.; Shen, Q. Secretome Diversity and Quantitative Analysis of Cellulolytic Aspergillus fumigatus Z5 in the Presence of Different Carbon Sources. Biotechnol. Biofuels 2013, 6, 149. DOI: 10.1186/1754-6834-6-149.
  • Machida, M.; Asai, K.; Sano, M.; Tanaka, T.; Kumagai, T.; Terai, G.; Kusumoto, K.-I.; Arima, T.; Akita, O.; Kashiwagi, Y.; et al. Genome Sequencing and Analysis of Aspergillus oryzae. Nature 2005, 438, 1157. DOI: 10.1038/nature04300.
  • Nierman, W. C.; Pain, A.; Anderson, M. J.; Wortman, J. R.; Kim, H. S.; Arroyo, J.; Berriman, M.; Abe, K.; Archer, D. B.; Bermejo, C.; et al. Genomic Sequence of the Pathogenic and Allergenic Filamentous Fungus Aspergillus fumigatus. Nature 2005, 438, 1151.
  • Pel, H. J.; de Winde, J. H.; Archer, D. B.; Dyer, P. S.; Hofmann, G.; Schaap, P. J.; Turner, G.; de Vries, R. P.; Albang, R.; Albermann, K.; et al. Genome Sequencing and Analysis of the Versatile Cell Factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 2007, 25, 221. DOI: 10.1038/nbt1282.
  • El-Sayed, A. S.; Shindia, A. A. Characterization and Immobilization of Purified Aspergillus flavipes L-Methioninase: continuous Production of Methanethiol. J. Appl. Microbiol. 2011, 111, 54–69. DOI: 10.1111/j.1365-2672.2011.05027.x.
  • Valera, H. R.; Gomes, J.; Lakshmi, S.; Gururaja, R.; Suryanarayan, S.; Kumar, D. Lovastatin Production by Solid State Fermentation Using Aspergillus flavipes. Enzyme Microb. Technol. 2005, 37, 521–526. DOI: 10.1016/j.enzmictec.2005.03.009.
  • Zhu, H.; Chen, C.; Tong, Q.; Yang, J.; Wei, G.; Xue, Y.; Wang, J.; Luo, Z.; Zhang, Y. Asperflavipine A: A Cytochalasan Heterotetramer Uniquely Defined by a Highly Complex Tetradecacyclic Ring System from Aspergillus flavipes QCS12. Angew. Chem. Int. Ed. 2017, 56, 5242–5246. DOI: 10.1002/anie.201701125.
  • Zhu, H.; Chen, C.; Tong, Q.; Li, X.-N.; Yang, J.; Xue, Y.; Luo, Z.; Wang, J.; Yao, G.; Zhang, Y. Epicochalasines A and B: Two Bioactive Merocytochalasans Bearing Caged Epicoccine Dimer Units from Aspergillus flavipes. Angew. Chem. Int. Ed. 2016, 55, 3486–3490. DOI: 10.1002/anie.201511315.
  • Frolova, G. M.; Sil'chenko, A. S.; Pivkin, M. V.; Mikhailov, V. V. Amylases of the Fungus Aspergillus flavipes Associated with Fucus evanescens. Appl. Biochem. Microbiol. 2002, 38, 134–138.
  • Wolf-Márquez, V. E.; Martínez-Trujillo, M. A.; Aguilar-Osorio, G.; Patiño, F.; Álvarez, M. S.; Rodríguez, A.; Sanromán, M. Á.; Deive, F. J. Scaling-up and Ionic Liquid-Based Extraction of Pectinases from Aspergillus flavipes Cultures. Bioresour. Technol. 2017, 225, 326–335. DOI: 10.1016/j.biortech.2016.11.067.
  • El-Sayed, A. S.; Yassin, M. A.; Ali, G. S. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation. PLoS One 2015, 10, e0144304. DOI: 10.1371/journal.pone.0144304.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Torres, L. R.; Aguilar, G. Xylanolytic System Proteins Desorption from Aspergillus flavipes FP-500 Cultures with Agrowastes. Rev. Mex. Ing. Quím. 2013, 12, 513–525.
  • Decker, S. R.; Adney, W. S.; Jennings, E.; Vinzant, T. B.; Himmel, M. E. Automated Filter Paper Assay for Determination of Cellulase Activity. Abab. 2003, 107, 689–704. DOI: 10.1385/ABAB:107:1-3:689.
  • Aguilar, G.; Morlon-Guyot, J.; Trejo-Aguilar, B.; Guyot, J. P. Purification and Characterization of an Extracellular α-Amylase Produced by Lactobacillus manihotivorans LMG 18010(T), an Amylolytic Lactic Acid Bacterium. Enzyme Microb. Technol 2000, 27, 406–413. DOI: 10.1016/S0141-0229(00)00230-1.
  • Pradal-Velázquez, M.; Martínez-Trujillo, M. A.; Aguilar-Osorio, G. Xylanases and Pectinases of Aspergillus flavus CECT-2687 on Different Carbon Sources and Initial 670pH Values. Rev. Mex. Ing. Quim. 2018, 17, 421–431. 671. DOI: 10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Pradal.
  • Cooper-Bribiesca, B.; Navarro-Ocaña, A.; Díaz-Ruiz, G.; Aguilar-Osorio, G.; Rodríguez-Sanoja, R.; Wacher, C. Lactic Acid Fermentation of Arabinoxylan from Nejayote by Streptococcus infantarius Ssp. infantarius 25124 Isolated from Pozol. Front. Microbiol. 2018, 9, 3061. DOI: 10.3389/fmicb.2018.03061.
  • Meneses, N.; Mendoza, G.; Encarnación, S. The Extracellular Proteome of Rhizobium etli CE3 in Exponential and Stationary Growth Phase. Proteome Sci. 2010, 8, 51. DOI: 10.1186/1477-5956-8-51.
  • Sparringa, R. A.; Owens, J. D. Inhibition of the Tempe Mould, Rhizopus oligosporus, by Ammonia. Lett. Appl. Microbiol. 1999, 29, 93–96. DOI: 10.1046/j.1365-2672.1999.00591.x.
  • Agger, J.; Viksø-Nielsen, A.; Meyer, A. S. Enzymatic Xylose Release from Pretreated Corn Bran Arabinoxylan: differential Effects of Deacetylation and Deferuloylation on Insoluble and Soluble Substrate Fractions. J. Agric. Food Chem. 2010, 58, 6141–6148. DOI: 10.1021/jf100633f.
  • Krishna, C. Solid-State Fermentation Systems—An Overview. Crit. Rev. Biotechnol. 2005, 25, 1–30. DOI: 10.1080/07388550590925383.
  • Teixeira, R. S. S.; Siqueira, F. G.; de Souza, M. V.; Ferreira Filho, E. X.; da Silva Bon, E. P. Purification and Characterization Studies of a Thermostable β-Xylanase from Aspergillus awamori. J. Ind. Microbiol. Biotechnol. 2010, 37, 1041–1051. DOI: 10.1007/s10295-010-0751-4.
  • de Carvalho, S. P.; Michelin, M.; Almeida, J. H.; Jorge, J. A.; Terenzi, H. F.; Teixeira, M. L. Production of Xylanase by Aspergilli Using Alternative Carbon Sources: Application of the Crude Extract on Cellulose Pulp Biobleaching. J. Ind. Microbiol. Biotechnol. 2009, 36, 149–155. DOI: 10.1007/s10295-008-0482-y.
  • de Vries, R. P.; Kester, H. C. M.; Poulsen, C. H.; Benen, J. A. E.; Visser, J. Synergy between Enzymes from Aspergillus Involved in the Degradation of Plant Cell Wall Polysaccharides. Carbohydr. Res. 2000, 327, 401–410. DOI: 10.1016/S0008-6215(00)00066-5.
  • O’Neal, M. A.; York, W. S. The composition and structure of plant primary cell walls. In The Plant Cell Wall; Rose, J. K. C. Ed.; Sheffield Academic Press: Sheffield, 2003; Vol. 8, pp. 1–54.
  • Maes, C.; Delcour, J. A. Structural Characterisation of Water-Extractable and Water-Unextractable Arabinoxylans in Wheat Bran. J. Cereal Sci. 2002, 35, 315–326. DOI: 10.1006/jcrs.2001.0439.
  • Galagan, J. E. Sequencing of Aspergillus nidulans and Comparative Analysis with A. fumigatus and A. oryzae. Nature 2005, 438, 22–29.
  • Payne, G. A.; Nierman, W. C.; Wortman, J. R.; Pritchard, B. L.; Brown, D.; Dean, R. A.; Bhatnagar, D.; Cleveland, T. E.; Machida, M.; Yu, J. Whole Genome Comparison of Aspergillus flavus and A. oryzae. Med. Mycol. 2006, 44, 9–S11. DOI: 10.1080/13693780600835716.
  • Fitzpatrick, D. A.; Logue, M. E.; Stajich, J. E.; Butler, G. A Fungal Phylogeny Based on 42 Complete Genomes Derived from Supertree and Combined Gene Analysis. BMC Evol. Biol. 2006, 6, 99.
  • Varga, J.; Tóth, B.; Kocsubé, S.; Farkas, B.; Szakács, G.; Téren, J.; Kozakiewicz, Z. Evolutionary Relationships among Aspergillus terreus Isolates and Their Relatives. Antonie Van Leeuwenhoek 2005, 88, 141–150. DOI: 10.1007/s10482-005-3870-6.
  • Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P. M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. DOI: 10.1093/nar/gkt1178.
  • van Peij, N. N. M. E.; Visser, J.; de Graaff, L. H. Isolation and Analysis of xlnR, Encoring a Transcriptional Activator co-Ordinating Xylanolytic Expression in Aspergillus niger. Mol. Microbiol. 1998, 27, 131–142. DOI: 10.1046/j.1365-2958.1998.00666.x.
  • de Vries, R. P.; Visser, J.; de Graaff, L. H. CreA Modulates the XlnR-Induced Expression on Xylose of Aspergillus niger Genes Involved in Xylan Degradation. Res. Microbiol. 1999, 150, 281–285. DOI: 10.1016/S0923-2508(99)80053-9.
  • Ximenes, E. A.; Felix, C. R.; Ulhoa, C. J. Production of Cellulases by Aspergillus fumigatus and Characterization of One β-Glucosidase. Curr. Microbiol. 1996, 32, 119–123. DOI: 10.1007/s002849900021.
  • Delmas, S.; Pullan, S. T.; Gaddipati, S.; Kokolski, M.; Malla, S.; Blythe, M. J.; Ibbett, R.; Campbell, M.; Liddell, S.; Aboobaker, A.; et al. Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing. PLoS Genet. 2012, 8, e1002875. DOI: 10.1371/journal.pgen.1002875.
  • Suganuma, T.; Fujita, K.; Kitahara, K. Some Distinguishable Properties between Acid-Stable and Neutral Types of α-Amylases from Acid-Producing Koji. J. Biosci. Bioeng. 2007, 104, 353–362. DOI: 10.1263/jbb.104.353.
  • Kato, N.; Suyama, S.; Shirokane, M.; Kato, M.; Kobayashi, T.; Tsukagoshi, N. Novel α-Glucosidase from Aspergillus nidulans with Strong Transglycosylation Activity. Appl. Environ. Microbiol. 2002, 68, 1250–1256. DOI: 10.1128/AEM.68.3.1250-1256.2002.
  • Selig, M. J.; Knoshaug, E. P.; Adney, W. S.; Himmel, M. E.; Decker, S. R. Synergistic Enhancement of Cellobiohydrolase Performance on Pretreated Corn Stover by Addition of Xylanase and Esterase Activities. Bioresour. Technol. 2008, 99, 4997–5005. DOI: 10.1016/j.biortech.2007.09.064.
  • Ravalason, H.; Jan, G.; Mollé, D.; Pasco, M.; Coutinho, P. M.; Lapierre, C.; Pollet, B.; Bertaud, F.; Petit-Conil, M.; Grisel, S.; et al. Secretome Analysis of Phanerochaete chrysosporium Strain CIRM-BRFM41 Grown on Softwood. Appl. Microbiol. Biotechnol. 2008, 80, 719. DOI: 10.1007/s00253-008-1596-x.
  • Ji, X. L.; Zhang, W. T.; Gai, Y. P.; Lu, B. Y.; Yuan, C. Z.; Liu, Q. X.; Mu, Z. M. Patterns of Lignocellulose Degradation and Secretome Analysis of Trametes trogii MT. Int. Biodeterior. Biodegrad. 2012, 75, 55–62. DOI: 10.1016/j.ibiod.2012.09.001.
  • Lu, X.; Sun, J.; Nimtz, M.; Wissing, J.; Zeng, A. P.; Rinas, U. The Intra- and Extracellular Proteome of Aspergillus niger Growing on Defined Medium with Xylose or Maltose as Carbon Substrate. Microb. Cell Fact. 2010, 9, 23. DOI: 10.1186/1475-2859-9-23.
  • Oda, K.; Kakizono, D.; Yamada, O.; Iefuji, H.; Akita, O.; Iwashita, K. Proteomic Analysis of Extracellular Proteins from Aspergillus oryzae Grown under Submerged and Solid-State Culture Conditions. Appl. Environ. Microbiol. 2006, 72, 3448–3457. DOI: 10.1128/AEM.72.5.3448-3457.2006.
  • Chen, S.; Su, L.; Chen, J.; Wu, J. Cutinase: Characteristics, Preparation, and Application. Biotechnol. Adv. 2013, 31, 1754–1767. DOI: 10.1016/j.biotechadv.2013.09.005.
  • Akoh, C. C.; Lee, G.-C.; Liaw, Y.-C.; Huang, T.-H.; Shaw, J.-F. GDSL Family of Serineesterases/Lipases. Prog. Lipid Res. 2004, 43, 534–552. DOI: 10.1016/j.plipres.2004.09.002.
  • Li, X.; Gao, M.; Han, X.; Tao, S.; Zheng, D.; Cheng, Y.; Yu, R.; Han, G.; Schmidt, M.; Han, L. Disruption of the Phospholipase D Gene Attenuates the Virulence of Aspergillus fumigatus. Infect. Immun. 2012, 80, 429–440. DOI: 10.1128/IAI.05830-11.
  • Nitsche, B. M.; Jørgensen, T. R.; Akeroyd, M.; Meyer, V.; Ram, A. F. J. The Carbon Starvation Response of Aspergillus niger during Submerged Cultivation: Insights from the Transcriptome and Secretome. BMC Genomics 2012, 13, 380. DOI: 10.1186/1471-2164-13-380.
  • Zhu, L.; Nemoto, T.; Yoon, J.; Maruyama, J.; Kitamoto, K. Improved Heterologous Protein Production by a Tripeptidyl Peptidase Gene (AosedD) Disruptant of the Filamentous Fungus Aspergillus oryzae. J. Gen. Appl. Microbiol. 2012, 58, 199–209. DOI: 10.2323/jgam.58.199.
  • Morita, H.; Tomita, S.; Maeda, H.; Okamoto, A.; Yamagata, Y.; Kusumoto, K.-I.; Amano, H.; Ishida, H.; Takeuchi, M. Serine-Type Carboxypeptidase KexA of Aspergillus oryzae Has Broader Substrate Specificity than Saccharomyces cerevisiae Kex1 and is Required for Normal Hyphal Growth and Conidiation. Appl. Environ. Microbiol. 2012, 78, 8154–8157. DOI: 10.1128/AEM.01601-12.
  • Mobley, H. L.; Island, M. D.; Hausinger, R. P. Molecular Biology of Microbial Ureases. Microbiol. Mol. Biol. Rev. 1995, 59, 451–480.
  • Smith, P.; King, A. D.; Goodman, N. Isolation and Characterization of Urease from Aspergillus niger. J. General Microbiol. 1993, 139, 957–962. DOI: 10.1099/00221287-139-5-957.
  • Mackay, E. M.; Pateman, J. A. The Regulation of Urease Activity in Aspergillus nidulans. Biochem. Genet. 1982, 20, 763–776. DOI: 10.1007/BF00483972.
  • Navarathna, D. H.; Harris, S. D.; Roberts, D. D.; Nickerson, K. W. Evolutionary Aspects of Urea Utilization by Fungi. FEMS Yeast Res. 2010, 10, 209–213. DOI: 10.1111/j.1567-1364.2010.00602.x.
  • Han, K. H.; Chun, Y. H.; Pimentel, B.; Marianetti, F.; Savoldi, M.; Almeida, A.; Rodrigues, F.; Cairns, C. T.; Bignell, E.; Moisés, J.; et al. The Conserved and Divergent Roles of Carbonic Anhydrases in the Filamentous Fungi Aspergillus fumigatus and Aspergillus nidulans. Mol. Microbiol. 2010, 75, 1372–1388. 75. DOI: 10.1111/j.1365-2958.2010.07152.x.
  • Asther, M.; Estrada, M. I.; Haon, M.; Navarro, D.; Asther, M.; Lesage-Meessen, L.; Record, E. Purification and Characterization of a Chlorogenic Acid Hydrolase from Aspergillus niger Catalyzing the Hydrolysis of Chlorogenic Acid. J. Biotechnol. 2005, 115, 47–56. DOI: 10.1016/j.jbiotec.2004.07.009.
  • Nigam, S.; Sarma, P. V. G. K.; Ghosh, P. C.; Sarma, P. U. Characterization of Aspergillus fumigatus Protein Disulfide Isomerase Family Gene. Gene 2001, 281, 143–150. DOI: 10.1016/S0378-1119(01)00794-6.
  • Alberts, B.; Johnson, A.; Lewis, J. Molecular Biology of the Cell 4th Edition. Garland Science: New York, 2002; General Principles of Cell Communication. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26813
  • Pateman, J. A.; Doy, C. H.; Olsen, J. E.; Norris, U.; Creaser, E. H.; Hynes, M. Regulation of Alcohol Dehydrogenase (ADH) and Aldehyde Dehydrogenase (AldDH) in Aspergillus nidulans. Proc. R. Soc. Lond. Series B, Biol. Sci. 1983, 217, 243–264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.