304
Views
1
CrossRef citations to date
0
Altmetric
Articles

Complexes of glucose oxidase with chitosan and dextran possessing enhanced stability

, , &

References

  • Erdagi, A. N.; Attar, A.; Basaran-Elalmis, Y.; Yucel, S.; Birbir, M. Production of α-Amylase from Haloarcula hispanica 2TK2 Strain: Optimization of the Parameters That Effecting Activity. Adv. Sci. Lett. 2013, 19, 3551–3555.
  • Altıkatoğlu Yapaöz, M.; Destanoğlu, A. Urease-Dextran Complexes with Enhanced Enzymatic Activity and Stability. J. Carbohydrate Chem. 2017, 36, 325–335.
  • Altikatoglu, M.; Celebi, M. Enhanced Stability and Decolorization of Coomassie Brilliant Blue R-250 by Dextran Aldehyde-Modified Horseradish Peroxidase. Artific. Cells, Blood Subst. Biotechnol. 2011, 39, 185–190.
  • Vardar, G.; Altikatoglu, M.; Basaran, Y.; Işıldak, İ. Synthesis of Glucose oxidase-PEG Aldehyde Conjugates and Improvement of Enzymatic Stability. Artific. Cells, Nanomed. Biotechnol. 2018, 46, 788–794.
  • Ozgen, M.; Attar, A.; Elalmis, Y.; Birbir, M.; Yucel, S. Enzymatic Activity of a Novel Halotolerant Lipase from Haloarcula hispanica 2TK2. Polish J. Chem. Technol. 2016, 18, 20–25.
  • Nemoto, M.; Sugihara, K.; Adachi, T.; Murata, K.; Shiraki, K.; Tsujimura, S. Effect of Electrolyte Ions on the Stability of Flavin Adenine Dinucleotide‐Dependent Glucose Dehydrogenase. ChemElectroChem 2019, 6, 1028–1031.
  • Tu, T.; Wang, Y.; Huang, H.; Wang, Y.; Jiang, X.; Wang, Z.; Yao, B.; Luo, H. Improving the Thermostability and Catalytic Efficiency of Glucose Oxidase from Aspergillus niger by Molecular Evolution. Food Chem. 2019, 281, 163–170.
  • Moses Phiri, M.; Wingrove Mulder, D.; Mason, S.; Christiaan Vorster, B. Facile Immobilization of Glucose Oxidase onto Gold Nanostars with Enhanced Binding Affinity and Optimal Function. R. Soc. Open Sci. 2019, 6, 190205.
  • Garcia-Hernandez, C.; Freese, A. K.; Rodriguez-Mendez, M. L.; Wanekaya, A. K. In Situ Synthesis, Stabilization and Activity of Protein-Modified Gold Nanoparticles for Biological Applications. Biomater. Sci. 2019, 7, 2511–2519.
  • Fuentes, M.; Pessela, B. C.; Maquiese, J. V.; Ortiz, C.; Segura, R. L.; Palomo, J. M.; Guisán, J. M. Reversible and Strong Immobilization of Proteins by Ionic Exchange on Supports Coated with Sulfate‐Dextran. Biotechnol. Progr. 2004, 20, 1134–1139.
  • Altikatoglu, M.; Kuzu, H. Improvement of Enzyme Stability via Non-Covalent Complex Formation with Dextran against Temperature and Storage Lifetime. Polish J. Chem. Technol. 2010, 12, 12–16.
  • Altikatoglu, M.; Arioz, C.; Basaran, Y.; Kuzu, H. Stabilization of Horseradish Peroxidase by Covalent Conjugation with Dextran Aldehyde against Temperature and pH Changes. Open Chem. 2009, 7, 423–428.
  • Shojaei, F.; Homaei, A.; Taherizadeh, M. R.; Kamrani, E. Enhancing Activity and Stability of Penaeus vannamei Protease against Heavy Metal Poisoning via Immobilization on Chitosan Nanoparticles. Modares J. Biotechnol. 2019, 1, 151–157.
  • Cabral, J. D.; Roxburgh, M.; Shi, Z.; Liu, L.; McConnell, M.; Williams, G.; Evans, N.; Hanton, L. R.; Simpson, J.; Moratti, S. C.; et al. Synthesis, Physiochemical Characterization, and Biocompatibility of a Chitosan/Dextran-Based Hydrogel for Postsurgical Adhesion Prevention. J. Mater. Sci: Mater. Med. 2014, 25, 2743–2756.
  • Altikatoglu, M.; Basaran, Y.; Arioz, C.; Ogan, A.; Kuzu, H. Glucose Oxidase-Dextran Conjugates with Enhanced Stabilities against Temperature and pH. Appl. Biochem. Biotechnol. 2010, 160, 2187–2197.
  • Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Glucose Oxidase—an Overview. Biotechnol. Adv. 2009, 27, 489–501.
  • Odyniec, M. L.; Gardiner, J. E.; Sedgwick, A. C.; He, X.-P.; Bull, S. D.; James, T. D. Dual Enzyme Activated Fluorescein Based Fluorescent Probe. Front. Chem. Sci. Eng. 2019, 1–5. https://link.springer.com/content/pdf/10.1007%2Fs11705-018-1785-9.pdf
  • Mano, N. Engineering Glucose Oxidase for Bioelectrochemical Applications. Bioelectrochemistry 2019, 128, 218–240.
  • Fu, L. ‐H.; Qi, C.; Hu, Y. ‐R.; Lin, J.; Huang, P. Glucose Oxidase‐Instructed Multimodal Synergistic Cancer Therapy. Adv. Mater. 2019, 31, 1808325.
  • Zhang, P.; Sun, D.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D.-P.; Choi, W. Modified Carbon Nitride Nanozyme as Bifunctional Glucose Oxidase-Peroxidase for Metal-Free Bioinspired Cascade Photocatalysis. Nat. Commun. 2019, 10, 940.
  • Jędrzak, A.; Rębiś, T.; Kuznowicz, M.; Jesionowski, T. Bio-Inspired Magnetite/Lignin/Polydopamine-Glucose Oxidase Biosensing Nanoplatform. From Synthesis, via Sensing Assays to Comparison with Others Glucose Testing Techniques. Int. J. Biol. Macromol. 2019, 127, 677–682.
  • Jamwal, S.; Ram, B.; Ranote, S.; Dharela, R.; Chauhan, G. S. New Glucose Oxidase-Immobilized Stimuli-Responsive Dextran Nanoparticles for Insulin Delivery. Int. J. Biol. Macromol. 2019, 123, 968–978.
  • Park, E.-H.; Shin, Y.-M.; Lim, Y.-Y.; Kwon, T.-H.; Kim, D.-H.; Yang, M.-S. Expression of Glucose Oxidase by Using Recombinant Yeast. J. Biotechnol. 2000, 81, 35–44.
  • Costa, S. A.; Azevedo, H. S.; Reis, R. L. Enzyme Immobilization in Biodegradable Polymers for Biomedical Applications; CRC Press: London, UK, 2005.
  • German, N.; Popov, A.; Ramanaviciene, A.; Ramanavicius, A. Enzymatic Formation of Polyaniline, Polypyrrole, and Polythiophene Nanoparticles with Embedded Glucose Oxidase. Nanomaterials 2019, 9, 806.
  • German, N.; Ramanaviciene, A.; Ramanavicius, A. Formation of Polyaniline and Polypyrrole Nanocomposites with Embedded Glucose Oxidase and Gold Nanoparticles. Polymers 2019, 11, 377.
  • Betancor, L.; Fuentes, M.; Dellamora-Ortiz, G.; López-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Mateo, C.; Guisán, J. M.; Fernández-Lafuente, R. Dextran Aldehyde Coating of Glucose Oxidase Immobilized on Magnetic Nanoparticles Prevents Its Inactivation by Gas Bubbles. J. Mol. Catal. B: Enzym. 2005, 32, 97–101.
  • Brady, D.; Jordaan, J. Advances in Enzyme Immobilisation. Biotechnol. Lett. 2009, 31, 1639–1650.
  • Gavalas, V. G.; Chaniotakis, N. A. Polyelectrolyte Stabilized Oxidase Based Biosensors: Effect of Diethylaminoethyl-Dextran on the Stabilization of Glucose and Lactate Oxidases into Porous Conductive Carbon. Anal. Chim. Acta 2000, 404, 67–73.
  • Vasileva, N.; Godjevargova, T. Study of the Effect of Some Organic Solvents on the Activity and Stability of Glucose Oxidase. Mater. Sci. Eng: C. 2005, 25, 17–21.
  • Liu, J. ‐Z.; Huang, Y. ‐Y.; Liu, J.; Weng, L. ‐P.; Ji, L. ‐N. Effects of Metal Ions on Simultaneous Production of Glucose Oxidase and Catalase by Aspergillus niger. Lett. Appl. Microbiol. 2001, 32, 16–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.