361
Views
6
CrossRef citations to date
0
Altmetric
Articles

Assessment of combination of pretreatment of Sorghum durra stalk and production of chimeric enzyme (β-glucosidase and endo β-1,4 glucanase, CtGH1-L1-CtGH5-F194A) and cellobiohydrolase (CtCBH5A) for saccharification to produce bioethanol

, , , , ORCID Icon &

References

  • Hu, F.; Ragauskas, A. Pretreatment and Lignocellulosic Chemistry. Bioenerg. Res. 2012, 5, 1043–1066. DOI: 10.1007/s12155-012-9208-0.
  • Zalkuwi, J.; Singh, R.; Bhattarai, M.; Singh, O. P.; Dayakar, B. Profitability Analysis of Sorghum Production in India. Int. J. Commerce Business Manag. 2014, 3, 707–714.
  • Jamaldheen, S. B.; Sharma, K.; Rani, A.; Moholkar, V. S.; Goyal, A. Comparative Analysis of Pretreatment Methods on Sorghum (Sorghum Durra) Stalk Agrowaste for Holocellulose Content. Prep. Biochem. Biotechnol. 2018, 48, 457–464. DOI: 10.1080/10826068.2018.1466148.
  • Zhang, R.; Li, X.; Fadel, F. G. Oyster Mushroom Cultivation with Rice and Wheat Straw. Bioresour. Technol. 2002, 82, 277–284. DOI: 10.1016/S0960-8524(01)00188-2.
  • Halvarsson, S.; Edlund, H.; Norgren, M. Manufacture of HighPerformance Rice-Straw Fiberboards. Ind. Eng. Chem. Res. 2010, 49, 1428–1435. DOI: 10.1021/ie901272q.
  • NRAA. Prioritization of Rainfed Areas in India. Study Report 4, NRAA, New Delhi, India, 2012, 1–100.
  • Yadav, K. S.; Naseeruddin, S.; Prashanthi, G. S.; Sateesh, L.; Rao, L. V. Bioethanol Fermentation of Concentrated Rice Straw Hydrolysate Using co-Culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour. Technol. 2011, 102, 6473–6478. DOI: 10.1016/j.biortech.2011.03.019.
  • Szczerbowski, D.; Pitarelo, A. P.; Filho, A. Z.; Ramos, L. P. Sugarcane Biomass for Biorefineries: Comparative Composition of Carbohydrate and Non-Carbohydrate Components of Bagasse and Straw. Carbohydr. Polym. 2014, 114, 95–101. DOI: 10.1016/j.carbpol.2014.07.052.
  • Silverstein, R. A.; Chen, Y.; Sharma-Shivappa, R. R.; Boyette, M. D.; Osborne, J. A Comparison of Chemical Pretreatment Methods for Improving Saccharification of Cotton Stalks. Bioresour. Technol. 2007, 98, 3000–3011. DOI: 10.1016/j.biortech.2006.10.022.
  • Kim, S.; Dale, B. E. Global Potential Bioethanol Production from Wasted Crops and Crop Residues. Biomass Bioenerg. 2004, 26, 361–375. DOI: 10.1016/j.biombioe.2003.08.002.
  • Jung, S. J.; Kim, S. H.; Chung, I. M. Comparison of Lignin, Cellulose, and Hemicellulose Contents for Biofuels Utilization among 4 Types of Lignocellulosic Crops. Biomass Bioenerg. 2015, 83, 322–327. DOI: 10.1016/j.biombioe.2015.10.007.
  • Li, S.; Li, G.; Zhang, L.; Zhou, Z.; Han, B.; Hou, W.; Wang, J.; Li, T. A Demonstration Study of Ethanol Production from Sweet Sorghum Stems with Advanced Solid State Fermentation Technology. Appl. Energy. 2013, 102, 260–265.
  • Badiei, M.; Asim, N.; Jahim, J. M.; Sopian, K. Comparison of Chemical Pretreatment Methods for Cellulosic Biomass. APCBEE Procedia. 2014, 9, 170–174. DOI: 10.1016/j.apcbee.2014.01.030.
  • Ostovareh, S.; Karimi, K.; Zamani, A. Efficient Conversion of Sweet Sorghum Stalks to Biogas and Ethanol Using Organosolv Pretreatment. Ind. Crop Prod. 2015, 66, 170–177. DOI: 10.1016/j.indcrop.2014.12.023.
  • McIntosh, S.; Vancov, T. Enhanced Enzyme Saccharification of Sorghum bicolor Straw Using Dilute Alkali Pretreatment. Bioresour. Technol. 2010, 101, 6718–6727. DOI: 10.1016/j.biortech.2010.03.116.
  • Chen, C.; Boldor, D.; Aita, G.; Walker, M. Ethanol Production from Sorghum by a Microwave-Assisted Dilute Ammonia Pretreatment. Bioresour. Technol. 2012, 110, 190–197. DOI: 10.1016/j.biortech.2012.01.021.
  • Singh, S.; Moholkar, V. S.; Goyal, A. Isolation, Identification, and Characterization of a Cellulolytic Bacillus amyloliquefaciens Strain SS35 from Rhinoceros Dung. ISRN Microbiol. 2013, 2013, 1–7. DOI: 10.1155/2013/728134.
  • Nath, P.; Dhillon, A.; Kumar, K.; Sharma, K.; Jamaldheen, S. B.; Moholkar, V. S.; Goyal, A. Development of bi-Functional Chimeric Enzyme (CtGH1-L1-CtGH5-F194A) from Endoglucanase (CtGH5) Mutant F194A and β-1,4-Glucosidase (CtGH1) from Clostridium thermocellum with Enhanced Activity and Structural Integrity. Bioresour. Technol. 2019, 282, 494–501. DOI: 10.1016/j.biortech.2019.03.051.
  • Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Nelson, N. A Photometric Adaptation of the Somogyi Method for the Determination of Glucose. J. Biol. Chem. 1944, 53, 375–380.
  • Somogyi, M. A. New Reagent for the Determination of Sugars. J. Biol. Chem. 1945, 160, 61–68.
  • TAPPI. Technical Association of Pulp and Paper Industry, Atlanta, GA, 1992.
  • Wen, P.; Zhang, T.; Wang, J.; Lian, Z.; Zhang, J. Production of Xylooligosaccharides and Monosaccharides from Poplar by a Two-Step Acetic Acid and Peroxide/Acetic Acid Pretreatment. Biotechnol. Biofuels. 2019, 12, 87.
  • Singh, S.; Sarma, S.; Agarwal, M.; Goyal, A.; Moholkar, V. S. Ultrasound Enhanced Ethanol Production from Parthenium Hysterophorus: A Mechanistic Investigation. Bioresour. Technol. 2015, 188, 287–294. DOI: 10.1016/j.biortech.2014.12.038.
  • S.T.P, B.; Singh, S.; Moholkar, V. S. Design and Optimization of a Sono-Hybrid Process for Bioethanol Production from Parthenium Hysterophorus. J. Taiwan Inst. Chem. Eng. 2015, 51, 71–78. DOI: 10.1016/j.jtice.2015.01.022.
  • Williams, M. B.; Reese, H. D. Colorimetric Determination of Ethyl Alcohol. Anal. Chem. 1950, 22, 1556–1561. DOI: 10.1021/ac60048a025.
  • Seo, H. B.; Kim, H. J.; Lee, O. K.; Ha, J. H.; Lee, H. Y.; Jung, K. H. Measurement of Ethanol Concentration Using Solvent Extraction and Dichromate Oxidation and Its Application to Bioethanol Production Process. J. Ind. Microbiol. Biotechnol. 2009, 36, 285–292. DOI: 10.1007/s10295-008-0497-4.
  • Fan, L. T.; Gharpuray, M. M.; Lee, Y. H. Cellulose Hydrolysis Biotechnology Monographs; Springer: Berlin, 1987, 57 pp.
  • Singh, S.; Khanna, S.; Moholkar, V. S.; Goyal, A. Screening and Optimization of Pre-Treatments for Parthenium hysterophorus as Feedstock for Alcoholic Biofuels. Appl. Energy. 2014, 129, 195–206. DOI: 10.1016/j.apenergy.2014.05.008.
  • Sun, Y.; Cheng, J. J. Dilute Acid Pretreatment of Rye Straw and Bermuda Grass for Ethanol Production. Bioresour. Technol. 2005, 96, 1599–1606. DOI: 10.1016/j.biortech.2004.12.022.
  • Lee, Y. Y.; Iyer, P.; Torget, R. W. Dilute-Acid Hydrolysis of Lignocellulosic Biomass. In Recent Progress in Bioconversion of Lignocellulosics. Springer, Berlin Heidelberg, 1999; pp. 93–115.
  • Borah, A. J.; Singh, S.; Goyal, A.; Moholkar, V. S. An Assessment of the Potential of Invasive Weeds as Multiple Feedstocks for Biofuel Production. RSC Adv. 2016, 6, 47151–47163. DOI: 10.1039/C5RA27787F.
  • Corredor, D. Y.; Salazar, J. M.; Hohn, K. L.; Bean, S.; Bean, B.; Wang, D. Evaluation and Characterization of Forage Sorghum as Feedstock for Fermentable Sugar Production. Appl. Biochem. Biotechnol. 2009, 158, 164–179. DOI: 10.1007/s12010-008-8340-y.
  • Wang, L.; Luo, Z.; Shahbazi, A. Optimization of Simultaneous Saccharification and Fermentation for the Production of Ethanol from Sweet Sorghum (Sorghum bicolor) Bagasse Using Response Surface Methodology. Ind. Crop. Prod. 2013, 42, 280–291. DOI: 10.1016/j.indcrop.2012.06.005.
  • Koo, B.-W.; Min, B.-C.; Gwak, K.-S.; Lee, S.-M.; Choi, J.-W.; Yeo, H.; Choi, I.-G. Structural Changes in Lignin during Organosolv Pretreatment of Liriodendron Tulipifera and the Effect on Enzymatic Hydrolysis. Biomass Bioenerg. 2012, 42, 24–32. DOI: 10.1016/j.biombioe.2012.03.012.
  • Pandey, K. K. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. DOI: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D.
  • Fan, M.; Dai, D.; Huang, B. Fourier Transform Spectroscopy for Natural Fibres. In Fourier Transform- Materials Analysis; Salih, S., Ed.; InTech Pub., 2012.
  • Agarwal, V.; Huber, G. W.; Conner, W. C.; Auerbach, S. M. Simulating Infrared Spectra and Hydrogen Bonding in Cellulose Ib at Elevated Temperatures. J. Chem. Phys. 2011, 135, 134506. DOI: 10.1063/1.3646306.
  • Emandi, A. N. A.; Ileana Vasiliu, C.; Budrugeac, P.; Stamatin, I. Quantitative Investigation of Wood Composition by Integrated FT-IR and Thermogravimetric Methods. Cell Chem. Technol. 2011, 45, 579.
  • Yu, J.; Tan, T. Ethanol Production by Solid State Fermentation of Sweet Sorghum Using Thermotolerant Yeast Strain. Fuel Process. Technol. 2008, 89, 1056–1059. DOI: 10.1016/j.fuproc.2008.04.008.
  • Xu, F.; Wang, J.; Dong, M.; Wang, S.; Xiao, G.; Li, Q.; Chen, J.; Li, W.; Hu, W.; Liu, J. Enhancing Enzymatic Hydrolysis Yield of Sweet Sorghum Straw Polysaccharides by Heavy Ion Beams Irradiation Pretreatment. Carbohyd. Polym. 2019, 222, 114976. DOI: 10.1016/j.carbpol.2019.114976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.