618
Views
10
CrossRef citations to date
0
Altmetric
Articles

A portable microfluidic device-based Fe3O4–urease nanoprobe-enhanced colorimetric sensor for the detection of heavy metals in fish tissue

, &

References

  • Baldwin, D. R.; Marshall, W. J. Heavy Metal Poisoning and Its Laboratory Investigation. Ann. Clin. Biochem. 1999, 36, 267–300. DOI: 10.1177/000456329903600301.
  • Tripathi, R.; Raghunath, R.; Krishnamoorthy, T. Dietary intake of heavy metals in Bombay City. Sci. Total Environ. 1997, 208, 149–159. DOI: 10.1016/S0048-9697(97)00290-8.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton. D. J. Heavy Metal Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology. Springer: Basel, Switzerland, 2012; pp. 133–164
  • Okyere, H.; Voegborlo, R.; Agorku, S. Human Exposure to Mercury, Lead and Cadmium through Consumption of Canned Mackerel, Tuna, Pilchard and Sardine. Food Chem. 2015, 179, 331–335. DOI: 10.1016/j.foodchem.2015.01.038.
  • Jezierska, B.; Witeska, M. The Metal Uptake and Accumulation in Fish Living in Polluted Waters. Soil and Water Pollution Monitoring, Protection and Remediation. Springer: Dordrecht, The Netherlands, 2006; pp. 107–114.
  • Petrlova, J.; Krizkova, S.; Zitka, O.; Hubalek, J.; Prusa, R.; Adam, V.; Wang, J.; Beklova, M.; Sures, B.; Kizek, R. Utilizing a Chronopotentiometric Sensor Technique for Metallothionein Determination in Fish Tissues and Their Host Parasites. Sens. Actuators, B. 2007, 127, 112–119. DOI: 10.1016/j.snb.2007.07.025.
  • Olsson, P.-E.; Kling, P.; Hogstrand, C. Mechanisms of Heavy Metal Accumulation and Toxicity in Fish. Metal Metabolism in Aquatic Environments. Springer: Boston, MA, 1998; pp. 321–350.
  • Sharma, S. K.; Goloubinoff, P.; Christen, P. Heavy Metal Ions Are Potent Inhibitors of Protein Folding. Biochem. Biophys. Res. Commun. 2008, 372, 341–345. DOI: 10.1016/j.bbrc.2008.05.052.
  • Commission CA. General Standard for Contaminants and Toxins in Food and Feed (Codex Stan 1993-1995). Food and Agriculture Organization: Rome, Italy; World Health Organization: Geneva, Switzerland, 2016.
  • Commission E. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union. 2006, 364, 4–25.
  • Food Safety and Standards (contaminants, toxins, and residues) Regulations, New Delhi, India, 2011, Version-IV.
  • Djedjibegovic, J.; Larssen, T.; Skrbo, A.; Marjanović, A.; Sober, M. Contents of Cadmium, Copper, Mercury and Lead in Fish from the Neretva River (Bosnia And Herzegovina) Determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Food Chem. 2012, 131, 469–476. DOI: 10.1016/j.foodchem.2011.09.009.
  • Gomes, J. M.; Donnici, C. L.; Júnior, J. D. C.; da Silva, J. B. B. Validation of Methods Employing Fast Alkaline Solubilization to Determine Cadmium in Fish Liver, Spleen, Gills and Muscle by Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2016, 124, 629–636. DOI: 10.1016/j.microc.2015.10.006.
  • Yu, L.-P. Cloud Point Extraction Preconcentration Prior to High-Performance Liquid Chromatography Coupled with Cold Vapor Generation Atomic Fluorescence Spectrometry for Speciation Analysis of Mercury in Fish Samples. J. Agric. Food Chem. 2005, 53, 9656–9662. DOI: 10.1021/jf051777k.
  • Goode, J.; Rushworth, J.; Millner, P. Biosensor Regeneration: A Review of Common Techniques and Outcomes. Langmuir 2015, 31, 6267–6276. DOI: 10.1021/la503533g.
  • He, W.; Luo, L.; Liu, Q.; Chen, Z. Colorimetric Sensor Array for Discrimination of Heavy Metal Ions in Aqueous Solution Based on Three Kinds of Thiols as Receptors. Anal. Chem. 2018, 90, 4770–4775. DOI: 10.1021/acs.analchem.8b00076.
  • Li, P.; Zhang, D.; Wu, J.; Cao, Y.; Wu, Z. Flexible Integrated Black Phosphorus Sensor Arrays for High Performance Ion Sensing. Sens. Actuators, B 2018, 273, 358–364. DOI: 10.1016/j.snb.2018.06.077.
  • Li, Y.; Chen, Y.; Yu, H.; Tian, L.; Wang, Z. Portable and Smart Devices for Monitoring Heavy Metal Ions Integrated with Nanomaterials. Trac, Trends Anal. Chem. 2018, 98, 190–200. DOI: 10.1016/j.trac.2017.11.011.
  • Sun, X.; Li, B.; Qi, A.; Tian, C.; Han, J.; Shi, Y.; Lin, B.; Chen, L. Improved Assessment of Accuracy and Performance Using a Rotational Paper-Based Device for Multiplexed Detection of Heavy Metals. Talanta 2018, 178, 426–431. DOI: 10.1016/j.talanta.2017.09.059.
  • Li, P.; Liu, B.; Zhang, D.; Sun, Y. e.; Liu, J. Graphene Field-Effect Transistors with Tunable Sensitivity for High Performance Hg (II) Sensing. Appl. Phys. Lett. 2016, 109, 153101. DOI: 10.1063/1.4964347.
  • Han, J.; Qi, A.; Zhou, J.; Wang, G.; Li, B.; Chen, L. Simple Way to Fabricate Novel Paper-Based Valves Using Plastic Comb Binding Spines. ACS Sens. 2018, 3, 1789–1794. DOI: 10.1021/acssensors.8b00518.
  • Chen, L.; Li, J.; Chen, L. Colorimetric Detection of Mercury Species Based on Functionalized Gold Nanoparticles. ACS. Appl. Mater. Interfaces. 2014, 6, 15897–15904. DOI: 10.1021/am503531c.
  • Li, B.; Fu, L.; Zhang, W.; Feng, W.; Chen, L. Portable Paper‐Based Device for Quantitative Colorimetric Assays Relying on Light Reflectance Principle. Electrophoresis 2014, 35, 1152–1159. DOI: 10.1002/elps.201300583.
  • Zhang, Z.; Wang, H.; Chen, Z.; Wang, X.; Choo, J.; Chen, L. Plasmonic Colorimetric Sensors Based on Etching and Growth of Noble Metal Nanoparticles: Strategies and Applications. Biosens. Bioelectron. 2018, 114, 52–65. DOI: 10.1016/j.bios.2018.05.015.
  • Tsai, H-c.; Doong, R-a. Simultaneous Determination of pH, Urea, Acetylcholine and Heavy Metals Using Array-Based Enzymatic Optical Biosensor. Biosens. Bioelectron. 2005, 20, 1796–1804. DOI: 10.1016/j.bios.2004.07.008.
  • Verma, N.; Sharma, R.; Kumar, S. Advancement towards Microfluidic Approach to Develop Economical Disposable Optical Biosensor for Lead Detection. Austin J. Biosens. Bioelectron. 2016, 2, 1021.
  • Krajewska, B.; van Eldik, R.; Brindell, M. Temperature- and Pressure-Dependent Stopped-Flow Kinetic Studies of Jack Bean Urease. Implications for the Catalytic Mechanism. J. Biol. Inorg. Chem. 2012, 17, 1123–1134. DOI: 10.1007/s00775-012-0926-8.
  • Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. 70 Years of Crystalline Urease: What Have we Learned? Acc. Chem. Res. 1997, 30, 330–337. DOI: 10.1021/ar960022j.
  • Benini, S.; Rypniewski, W. R.; Wilson, K. S.; Miletti, S.; Ciurli, S.; Mangani, S. A New Proposal for Urease Mechanism Based on the Crystal Structures of the Native and Inhibited Enzyme from Bacillus pasteurii: Why Urea Hydrolysis Costs Two Nickels. Structure 1999, 7, 205–216. DOI: 10.1016/S0969-2126(99)80026-4.
  • Ding, Y.; Wang, S.; Li, J.; Chen, L. Nanomaterial-Based Optical Sensors for Mercury Ions. Trac, Trends Anal. Chem. 2016, 82, 175–190. DOI: 10.1016/j.trac.2016.05.015.
  • Hu, Q.-Z.; Jang, C.-H. Liquid Crystal-Based Sensors for the Detection of Heavy Metals Using Surface-Immobilized Urease. Colloids Surf B Biointerfaces 2011, 88, 622–626. DOI: 10.1016/j.colsurfb.2011.07.052.
  • Zhou, J.; Cao, J.; Huang, W.; Huang, L.; Wang, Y.; Zhang, S.; Yuan, Y.; Hua, D. Preparation and Property of Urease Immobilization with Cationic Poly (4-Vinylpyridine) Functionalized Colloidal Particles. Chem. Biochem. Eng. Q 2013, 27, 431–437.
  • Dominguez, R. B.; Hayat, A.; Alonso, G. A.; Gutiérrez, J. M.; Muñoz, R.; Marty, J.-L. Nanomaterial-Based Biosensors for Food Contaminant Assessment. In Nanobiosensors. Elsevier, Academic Press, Cambridge, Massachusetts, U.S.A., 2017; pp. 805–839.
  • Karami, C.; Taher, M. A. A Catechol Biosensor Based on Immobilizing Laccase to Fe3O4@Au Core-Shell Nanoparticles. Int. J. Biol. Macromol. 2019, 129, 84–90. DOI: 10.1016/j.ijbiomac.2019.02.015.
  • Willner, M. R.; Vikesland, P. J. Nanomaterial Enabled Sensors for Environmental Contaminants. J. Nanobiotechnol. 2018, 16, 95. DOI: 10.1186/s12951-018-0419-1.
  • Bini, R. A.; Marques, R. F. C.; Santos, F. J.; Chaker, J. A.; Jafelicci, M. Jr.. Synthesis and Functionalization of Magnetite Nanoparticles with Different Amino-Functional Alkoxysilanes. J. Magn. Magn. Mater. 2012, 324, 534–539. DOI: 10.1016/j.jmmm.2011.08.035.
  • Swain, K. K.; Bhand, S. A Dual-Readout Magnetic Nanoparticle-Based Enzyme Assay for the Sensitive Detection of Hg (II) Ions in Drinking Water. ACS Earth. Space. Chem. 2018, 2, 1312–1322. DOI: 10.1021/acsearthspacechem.8b00142.
  • Shaw, W. H. The Inhibition of Urease by Various Metal Ions. J. Am. Chem. Soc. 1954, 76, 2160–2163. DOI: 10.1021/ja01637a034.
  • Wilson, J. M.; Laurent, P. Fish Gill Morphology: Inside Out. J. Exp. Zool. 2002, 293, 192–213. DOI: 10.1002/jez.10124.
  • Farombi, E.; Adelowo, O.; Ajimoko, Y. Biomarkers of Oxidative Stress and Heavy Metal Levels as Indicators of Environmental Pollution in African Cat Fish (Clarias gariepinus) from Nigeria Ogun River. Int. J. Environ. Res. Public Health. 2007, 4, 158–165. DOI: 10.3390/ijerph2007040011.
  • Meucci, V.; Laschi, S.; Minunni, M.; Pretti, C.; Intorre, L.; Soldani, G.; Mascini, M. An Optimized Digestion Method Coupled to Electrochemical Sensor for the Determination of Cd, Cu, Pb and Hg in Fish by Square Wave Anodic Stripping Voltammetry. Talanta 2009, 77, 1143–1148. DOI: 10.1016/j.talanta.2008.08.008.
  • Olmedo, P.; Pla, A.; Hernández, A.; Barbier, F.; Ayouni, L.; Gil, F. Determination of Toxic Elements (Mercury, Cadmium, Lead, Tin and Arsenic) in Fish and Shellfish Samples. Risk Assessment for the Consumers. Environ. Int. 2013, 59, 63–72. DOI: 10.1016/j.envint.2013.05.005.
  • Zhang, W.; Xu, Y.; Tahir, H. E.; Zou, X.; Wang, P. Rapid and wide-range determination of Cd(II), Pb(II), Cu(II) and Hg(II) in fish tissues using light addressable potentiometric sensor. Food Chem. 2017, 221, 541–547. DOI: 10.1016/j.foodchem.2016.11.141.
  • Beiraghi, A.; Pourghazi, K.; Amoli-Diva, M. Thiodiethanethiol Modified Silica Coated Magnetic Nanoparticles for Preconcentration and Determination of Ultratrace Amounts of Mercury, Lead, and Cadmium in Environmental and Food Samples. Anal. Lett. 2014, 47, 1210–1223. DOI: 10.1080/00032719.2013.865206.
  • Mashhadizadeh, M. H.; Amoli-Diva, M.; Shapouri, M. R.; Afruzi, H. Solid Phase Extraction of Trace Amounts of Silver, Cadmium, Copper, Mercury, and Lead in Various Food Samples Based on Ethylene Glycol Bis-Mercaptoacetate Modified 3-(Trimethoxysilyl)-1-Propanethiol Coated Fe3O4 Nanoparticles. Food Chem. 2014, 151, 300–305. DOI: 10.1016/j.foodchem.2013.11.082.
  • Wang, H.; Li, Y-j.; Wei, J-f.; Xu, J-r.; Wang, Y-h.; Zheng, G-x. Paper-Based Three-Dimensional Microfluidic Device for Monitoring of Heavy Metals with a Camera Cell Phone. Anal. Bioanal. Chem. 2014, 406, 2799–2807. DOI: 10.1007/s00216-014-7715-x.
  • Wang, G.; Chu, L. T.; Hartanto, H.; Utomo, W. B.; Pravasta, R. A.; Chen, T.-H. Microfluidic Particle Dam for Visual and Quantitative Detection of Lead Ions. ACS Sens. 2020, 5, 19–23. DOI: 10.1021/acssensors.9b01945.
  • Li, P.; Zhang, D.; Jiang, C.; Zong, X.; Cao, Y. Ultra-Sensitive Suspended Atomically Thin-Layered Black Phosphorus Mercury Sensors. Biosens. Bioelectron. 2017, 98, 68–75. DOI: 10.1016/j.bios.2017.06.027.
  • Devadhasan, J. P.; Kim, J. A Chemically Functionalized Paper-Based Microfluidic Platform for Multiplex Heavy Metal Detection. Sens. Actuators, B 2018, 273, 18–24. DOI: 10.1016/j.snb.2018.06.005.
  • Han, F.; Huang, X.; Teye, E. Novel Prediction of Heavy Metal Residues in Fish Using a Low‐Cost Optical Electronic Tongue System Based on Colorimetric Sensors Array. J. Food Process Eng. 2019, 42, e12983. DOI: 10.1111/jfpe.12983.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.