653
Views
16
CrossRef citations to date
0
Altmetric
Articles

Biosynthesis of silver nanoparticles using isolated Bacillus subtilis: characterization, antimicrobial activity, cytotoxicity, and their performance as antimicrobial agent for textile materials

ORCID Icon, , , , , , , ORCID Icon & show all

References

  • El-Beshehy, E. K. F.; Elazzazy, A. M.; Aggelis, G. Silver Nanoparticles Synthesis Mediated by New Isolates of Bacillus Spp., Nanoparticle Characterization and Their Activity against Bean Yellow Mosaic Virus and Human Pathogens. Front. Microbiol. 2015, 6, 453–461.
  • Chokriwal, A.; Sharma, M. M.; Singh, A. Biological Synthesis of Nanoparticles Using Bacteria and their Applications. Am J. Pharm. Res. 2014, 4, 2249–3387.
  • Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M. M. Nanosilver Particles in Medical Applications: Synthesis, Performance, and Toxicity. Int. J. Nanomed. 2014, 9, 2399–2407.
  • Jacob, J. M.; John, M. S.; Jacob, A.; Abitha, P.; Kumar, S. S.; Rajan, R.; Natarajan, S.; Pugazhendhi, A. Bactericidal Coating of Paper Towels via Sustainable Biosynthesis of Silver Nanoparticles Using Ocimum Sanctum Leaf Extract. Mater. Res. Express. 2019, 6, 045401.
  • Tian, X.; Jiang, X.; Welch, C.; Croley, T.-R.; Wong, T.-Y.; Chen, C.; Fan, S.; Chong, Y.; Li, R.; Ge, C.; et al. Bactericidal Effects of Silver Nanoparticles on Lactobacilli and the Underlying Mechanism. ACS Appl. Mater. Interfaces. 2018, 10, 8443–8450.
  • Chaudhari, P. R.; Masurkar, S. A.; Shidore, V.; B; Kamble, S. P. Antimicrobial Activity of Extracellular Synthesized Silver Nanoparticles Using Lactobacillus Species Obtained from VIZYLAG Capsule. J. Appl. Pharm. Sci. 2012, 2, 25–29.
  • Siddiqi, K. S.; Husen, A.; Rao, R. A. K. A Review on Biosynthesis of Silver Nanoparticles and their Biocidal Properties. J. Nanobiotechnol. 2018, 16, 14.
  • EL-Saadony, M. T.; EL- Wafai, N. A.; Abd-EL-Fattah, H. I.; Mahgoub, S. A. Biosynthesis, Optimization and Characterization of Silver Nanoparticles Using a Soil Isolate of Bacillus pseudomycoides MT 32 and their Antifungal Activity against Some Pathogenic Fungi. Adv. Anim. Vet. Sci. 2019, 7, 238–249.
  • El-Bendary, M. A.; Moharam, M. E.; Abdelraof, M.; Allam, M. A.; Roshdy, A. M.; Shaheen, M. N. F.; Elmahdy, E. M.; Elkomy, G. M. Multi bioactive silver nanoparticles synthesized using mosquitocidal Bacilli and their characterization. Arch. Microbiol. 2019, 202, 63–75.
  • Priyadarshini, S.; Gopinath, V.; Priyadharsshini, N. M.; MubarakAli, D.; Velusamy, P. Synthesis of Anisotropic Silver Nanoparticles Using Novel Strain, Bacillus flexus and Its Biomedical Application. Colloids Surf. B Biointerfaces. 2013, 102, 232–237.
  • Soni, N.; Prakash, S. Antimicrobial and Mosquitocidal Activity of Microbial Synthesized Silver Nanoparticles. Parasitol. Res. 2015, 114, 1023–1030. DOI: 10.1007/s00436-014-4268-z.
  • Balakumaran, M. D.; Ramachandran, R.; Balashanmugam, P.; Mukeshkumar, D. J.; Kalaichelvan, P. T. Mycosynthesis of Silver and Gold Nanoparticles: Optimization, Characterization and Antimicrobial Activity against Human Pathogens. Microbiol. Res. 2016, 182, 8–20.
  • Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver Nanoparticles as Potential Antiviral Agents. Molecules. 2011, 16, 8894–8918.
  • Murugan, K.; Aruna, P.; Panneerselvam, C.; Madhiyazhagan, P.; Paulpandi, M.; Subramaniam, J.; Rajaganesh, R.; Wei, H.; Alsalhi, M. S.; Devanesan, S.; et al. Fighting Arboviral Diseases: Low Toxicity on Mammalian Cells, Dengue Growth Inhibition (in Vitro), and Mosquitocidal Activity of Centroceras Clavulatum–Synthesized Silver Nanoparticles. Parasitol. Res. 2015, 15, 4783–4786.
  • Rivero, P. J.; Urrutia, A.; Goicoechea, J.; Arregui, F. J. Nanomaterials for Functional Textiles and Fibers. Nanoscale Res. Lett. 2015, 10, 501.
  • Shojaei, K. M.; Farrahi, A.; Farrahi, H.; Farrahi, A. The Stabilization of Nano Silver on Polyester Filament for a Machine- Made Carpet. Mater. Technol. 2015, 49, 461–464.
  • Zhang, G.; Liu, Y.; Gao, X.; Chen, Y. Synthesis of Silver Nanoparticles and Antibacterial Property of Silk Fabrics Treated by Silver Nanoparticles. Nanoscale Res. Lett. 2014, 9, 216–223.
  • Perumalraj, R. Effect of Sliver Nanoparticles on Wool Fiber. Chem. Eng. 2012, 2012, 1–4.
  • Perelshtein, I.; Applerot, G.; Perkas, N.; Guibert, G.; Mikhailov, S.; Gedanken, A. Sonochemical Coating of Silver Nanoparticles on Textile Fabrics (Nylon, Polyester and Cotton) and their Antibacterial Activity. Nanotechnology. 2008, 19, 245705.
  • El-Naggar, N. E.-A.; Mohamedin, A.; Hamza, S. S.; Sherief, A.-D. Extracellular Biofabrication, Characterization, and Antimicrobial Efficacy of Silver Nanoparticles Loaded on Cotton Fabrics Using Newly Isolated Streptomyces sp. SSHH-1E. J. Nanomater. 2016, 2016, 1–7.
  • Montazer, M.; Hajimirzababa, H.; Rahimi, M. K.; Alibakhshi, S. Durable anti-Bacterial Nylon Carpet Using Colloidal Nano Silver. FIBRES TEXT. East. Eur. 2012, 20, 96–101.
  • Pazos-Ortiz, E.; Roque-Ruiz, J. H.; Hinojos-Márquez, E. A.; López-Esparza, J.; Donohué-Cornejo, A.; Cuevas-González, J. C.; Espinosa-Cristóbal, L. F.; Reyes-López, S. Y. Dose-Dependent Antimicrobial Activity of Silver Nanoparticles on Polycaprolactone Fibers against Gram-Positive and Gram-Negative Bacteria. J. Nano Mater. 2017, 2017, 1–9.
  • Yabuuchi, E. Current Topics on Classification and Nomenclature of Bacteria. 7. Taxonomic Outline of Archeae and Bacteria in the Second Edition of Bergey's Manual of Systematic Bacteriology. Kansenshogaku Zasshi. 2001, 75, 653–655.
  • Weisburg, W. G.; Barns, S. M.; Pelletier, D. A.; Lane, D. J. 16S Ribosomal DNA Amplification for Phytogenetic Study. J. Bacteriol. 1991, 173, 697–703.
  • Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1569.
  • Oza, G.; Pandey, S.; Shah, R.; Sharon, N. A Mechanistic Approach for Biological Fabrication of Crystalline Gold Nanoparticles Using Marine Algae, Sargassumwightii. Eur. J. Exp. Biol. 2012, 2, 505–512.
  • Mosmann, T. Rapid Colorimetric Assays for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods. 1983, 65, 55–63.
  • Simões, C. M. O.; Amoros, M.; Girre, L. Mechanism of Antiviral Activity of Triterpenoid Saponins. Phytoth. Res. 1999, 21, 317–325.
  • Finney, D. J. Statistical Method in Biological Assay; Macmillan Publishing Co. Inc., New York, 1978; 394–398 pp.
  • Semler, D. E. The Rat Toxicology in Animal Models in Toxicology; Marcel Dekker, New York, Basel, Hong Kong, 1992; 39 p.
  • Desoukey, S. Y.; El Kady, W. M.; Salama, A. A. A.; Hagag, E. G.; El-Shenawy, S. M. Hepatoprotection and Antioxidant Activity of G.azanialongiscapa and G.rigenswith the Isolation and Quantitative Analysis of Bioactive Metabolites. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 1121–1131.
  • Mansour, H. M.; Salama, A. A. A.; Abdel-Salam, R. M.; Ahmed, N. A.; Yassen, N. N.; Zaki, H. F. The Anti-Inflammatory and Anti-Fibrotic Effects of Tadalafil in Thioacetamide-Induced Liver Fibrosis in Rats. Can. J. Physiol. Pharmacol. 2018, 96, 1308–1317.
  • Mohsen, A. M.; Asfour, M. H.; Salama, A. A. A. Improved Hepatoprotective Activity of Silymarin via Encapsulation in the Novel Vesicular Nanosystembilosomes. Drug Dev. Ind. Pharm. 2017, 43, 2043–2054.
  • Zhang, H.; Jacob, J. A.; Jiang, Z.; Xu, S.; Sun, K.; Zhong, Z.; Varadharaju, N.; Shanmugam, A. Hepatoprotective Effect of Silver Nanoparticles Synthesized Using Aqueous Leaf Extract of Rhizophora Apiculata. Int. J. Nanomed. 2019, 14, 3517–3524.
  • El-Baz, F. K.; Salama, A.; Salama, R. A. A. Therapeutic Effect of Dunaliella Salina Microalgae onThioacetamide- (TAA-) Induced Hepatic Liver Fibrosis in Rats: Role of TGF-Βand MMP9. BioMed. Res. Int. 2019, 2019, 1–9.
  • Mahmoud, W. M.; Abdelmoneim, T. S.; Elazzazy, A. M. The Impact of Silver Nanoparticles Produced by Bacillus pumilus as Antimicrobial and Nematicide. Front. Microbiol. 2016, 7, 1746.
  • Wang, C.; Kim, Y. J.; Singh, P.; Mathiyalagan, R.; Jin, Y.; Yang, D. C. Green Synthesis of Silver Nanoparticles by Bacillus methylotrophicus, and Their Antimicrobial Activity. Arti. Cells Nanomed. Biotechnol. 2016, 44, 1127–1132.
  • Saravanan, M.; Barik, S. K.; Ali, D. M.; Prakash, P.; Pugazhendhi, A. Synthesis of Silver Nanoparticles from Bacillus brevis (NCIM 2533) and their Antibacterial Activity against Pathogenic Bacteria. Microb. Pathog. 2018, 116, 221–226.
  • Shanmuganathan, R.; MubarakAli, D.; Prabakar, D.; Muthukumar, H.; Thajuddin, N.; Kumar, S. S.; Pugazhendhi, A. An Enhancement of Antimicrobial Efficacy of Biogenic and Ceftriaxone-Conjugated Silver Nanoparticles: Green Approach. Environ. Sci. Pollut. Res. Int. 2018, 25, 10362–10370.
  • Banu, A. N.; Balasubramanian, C.; Moorthi, P. V. Biosynthesis of Silver Nanoparticles Using Bacillus thuringiensis against Dengue Vector, Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2014, 113, 311–316.
  • Gou, Y.; Zhou, R.; Ye, X.; Gao, S.; Li, X. Highly Efficient In Vitro Biosynthesis of Silver Nanoparticles Using Lysinibacillus sphaericus MR-1 and their Characterization. Sci. Technol. Adv. Mater. 2015, 16, 015004.
  • Saravanan, M.; Vemu, A. K.; Barik, S. K. Rapid Biosynthesis of Silver Nanoparticles from Bacillus megaterium (NCIM 2326) and their Antibacterial Activity on Multi Drug Resistant Clinical Pathogens. Colloids Surf B Biointerfaces. 2011, 88, 325–331.
  • Kratošová, G.; Holišová, V.; Konvičková, Z.; Ingle, A. P.; Gaikwad, S.; Škrlová, K.; Prokop, A.; Rai, M.; Plachá, D. From Biotechnology Principles to Functional and Low-Cost Metallic Bionanocatalysts. Biotechnol. Adv. 2019, 37, 154–176.
  • Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of Silver Nanoparticles Synthesized Using Urticadioica Linn. Leaves and Their Synergistic Effects with Antibiotics. J. Radiation Res. Appl. Sci. 2016, 9, 217–227.
  • Banerjee, K.; Rai, V. R. A Review on Mycosynthesis, Mechanism, and Characterization of Silver and Gold. BioNanoScience. 2018, 8, 17–31.
  • Rai, M.; Gade, A. Yadav, A. Biogenic Nanoparticles: An Introduction to What They Are, How They Are Synthesized, and Their Applications. In Metal Nanoparticles in Microbiology; Rai, M., Duran, N., Eds.; Springer: Berlin, 2011; 1–14 pp.
  • Mishra, A.; Tripathy, S.; Wahab, R.; Jeong, S.-H.; Hwang, I.; Yang, Y.-B.; Kim, Y. S.; Shin, H. S.; Yun, S. I. I. Microbial Synthesis of Gold Nanoparticles Using the Fungus Penicillium Brevicompactum and their Cytotoxic Effects against Mouse Mayo Blast Cancer C2C12 Cells. Appl. Microbiol. Biotechnol. 2011, 92, 617–630.
  • El-Domany, E. B.; Essam, T. M.; Ahmed, A. E.; Farghali, A. A. Biosynthesis Physico-Chemical Optimization of Gold Nanoparticles as anti-Cancer and Synergetic Antimicrobial Activity Using Pleurotus ostreatus Fungus. J. Appl. Pharm. Sci. 2018, 8, 119–128.
  • Liao, C.; Li, Y.; Tjong, S. C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int. J. Mol. Sci. 2019, 20, 449.
  • Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthc. Mater. 2018, 7, e1701503.
  • Dahikar, S. B.; Bhutada, S. A. Biosynthesis of Silver Nanoparticles Using Bacillus megaterium and their Antibacterial Potential. IJADD. 2013, 3, 13–19.
  • Sunkar, S.; Nachiyar, C. V. Biogenesis of Antibacterial Silver Nanoparticles Using the Endophytic Bacterium Bacillus cereus Isolated from Garcinia Xanthochymus. Asian Pac. J. Trop. Biomed. 2012, 2, 953–959.
  • Fouad, H.; Hongjie, L.; Yanmei, D.; Baoting, Y.; El-Shakh, A.; Abbas, G.; Jianchu, M. Synthesis and Characterization of Silver Nanoparticles Using Bacillus amyloliquefaciens and Bacillus subtilis to Control Filarial Vector Culex pipiens Pallens and Its Antimicrobial Activity. Artif. Cells. Nanomed. Biotechnol. 2017, 45, 1369–1137.
  • Wang, X.; Ji, Z.; Chang, C. H.; Zhang, H.; Wang, M.; Liao, Y. P.; Lin, S.; Meng, H.; Li, R.; Sun, B.; et al. Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential. Small 2014, 10, 385–398.
  • Liu, W.; Wu, Y.; Wang, C.; Li, H. C.; Wang, T.; Liao, C. Y.; Cui, L.; Zhou, Q. F.; Yan, B.; Jiang, G. B. Impact of Silver Nanoparticles on Human Cells: Effect of Particle Size. Nanotoxicology. 2010, 4, 319–330.
  • Murugan, K.; Dinesh, D.; Paulpandi, M.; Althbyani, A. D. M.; Subramaniam, J.; Madhiyazhagan, P.; Wang, L.; Suresh, U.; Kumar, P. M.; Mohan, J.; et al. Nanoparticles in the Fight against Mosquito-Borne Diseases: Bioactivity of Bruguiera Cylindrica-Synthesized Nanoparticles against Dengue Virus DEN-2 (In Vitro) and Its Mosquito Vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2015, 114, 4349–4361.
  • Vasquez, R. D.; Apostol, J. G.; de Leon, J. D.; Mariano, J. D.; Mirhan, C. M. C.; Pangan, S. S.; Reyes, A. G. M.; Zamora, E. T. Polysaccharide-Mediated Green Synthesis of Silver Nanoparticles from Sargassum Siliquasum J.G. Agardh: Assessment of Toxicity and Hepatoprotective Activity. Open Nano. 2016, 1, 16–24.
  • Surendran, S. P.; Thomas, R. G.; Moon, M. J.; Jeong, Y. Y. Nanoparticles for the Treatment of Liver Fibrosis. Int. J. Nanomed. 2017, 12, 6997–7006.
  • Bhuvaneswari, R.; Chidambaranathan, N.; Jegatheesan, K. Hepatoprotective Effect of Embilica Officinalis and Its Silver Nanoparticles against CCl4 Induced Hepatotoxicity in Wistar Albino Rats. Dig. J. Nanomater. Bio. 2014, 9, 223–235.
  • Suriyakalaa, U.; Antony, J. J.; Suganya, S.; Siva, D.; Sukirtha, R.; Kamalakkannan, S.; Pichiah, P. B. T.; Achiraman, S. Hepatocurative activity of biosynthesized silver nanoparticles fabricated using Andrographis paniculata. Colloids Surf. B Biointerfaces. 2013, 102, 189–194
  • El-Shishtawy, R. M.; Asiri, A. M.; Abdelwahed, N. A. M.; Al-Otaibi, M. M. In Situ Production of Silver Nanoparticle on Cotton Fabric and Its Antimicrobial Evaluation. Cellulose. 2011, 18, 75–82.
  • Wu, D.; Fang, Y. The Absorption Behavior of p-Hydroxybenzoic Acid on a Silver-Coated Filter Paper by Surface Enhanced Raman Scattering. J. Colloid Interface Sci. 2003, 265, 234–238.
  • Badr, Y.; Mahmoud, M. A. Size-Dependent Surface-Enhanced Raman Scattering of Sodium Benzoate on Silver Nanoparticles. J. Mol. Struct. 2005, 749, 187–192.
  • Kelly, F. M.; Johnston, J. H. Colored and Functional Silver Nanoparticle-Wool Fiber Composites. ACS Appl. Mater Interfaces. 2011, 3, 1083–1092.
  • Tang, B.; Wang, J.; Xu, S.; Afrin, T.; Xu, W.; Sun, L.; Wang, X. Application of Anisotropic Silver Nanoparticles: Multifunctionanlization of Wool Fabric. J. Colloid Interface Sci. 2011, 356, 513–518.
  • Radetic, M. Functionalization of Textile Materials with Silvernanoparticles. J. Mater. Sci. 2013, 48, 95–107.
  • Rajaboopathi, S.; Thambidurai, S. Evaluation of UPF and Antibacterial Activity of Cotton Fabric Coated with Colloidal Seaweed Extract Functionalized Silver Nanoparticles. J. Photochem. Photobiol. B Biol. 2018, 183, 75–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.