317
Views
10
CrossRef citations to date
0
Altmetric
Articles

Kinetic modeling and quasi-economic analysis of fermentative glycolipopeptide biosurfactant production in a medium co-optimized by statistical and neural network approaches

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , & show all

References

  • Olasanmi, I. O.; Thring, I. W. The Role of Biosurfactants in the Continued Drive for Environmental Sustainability. Sustainability. 2018, 10, 4817.
  • Ebrahimipour, G.; Sadeghi, H.; Zarinviarsagh, M. Statistical Methodologies for the Optimization of Lipase and Biosurfactant by Ochrobactrum intermedium Strain MZV101 in an Identical Medium for Detergent Applications. Molecules. 2017, 22, 1460.
  • Balan, S. S.; Kumar, C. G.; Jayalakshmi, S. P. Structural and Biological. Evaluation of Cybersan (Trigalactomargarate), a New Glycolipid Biosurfactant Produced by a Marine Yeast, Cyberlindnera Saturnus Strain SBPN-27. Proc. Biochem. 2019, 80, 171–180.
  • Sharma, R.; Singh, J.; Verma, N. Statistical Optimization and Comparative Study of Lipopeptides Produced by Bacillus amyloliquefaciens SAS-1 and Bacillus subtilis BR-15. Biocatal. Agric. Biotechnol. 2020, 25, 101575.
  • Ilori, M. O.; Amund, D. I. Production of a Peptidoglycolipid Bioemulsifier by Pseudomonas aeruginosa grown on Hydrocarbon. Z. Naturforsch. C J. Biosci. 2001, 56, 547–552.
  • Ekpenyong, M. G.; Antai, S. P.; Asitok, A. D. A Pseudomonas aeruginosa Strain IKW1 Produces an Unusual Polymeric Surface-Active Compound in Waste Frying Oil-Minimal Medium. Int. J. Sci. 2016, 5, 108–123.
  • Nogueira, I. B.; Rodriguez, D. M.; Andradade, R. F.; D-S.; Lins, A. B.; Bione, A. P.; Sales da Silva, I. G.; Franco, L.; D-O.; de Campos-Takaki, G. M. Bioconversion of Agricultural Waste in the Production of Bioemulsifier by Stenotrophomonas Maltoplila UCP 1601 and Application in Bioremediation Process. Int. J. Chem. Eng. 2020,  Article ID 9434059, 9pages. https://doi.org/10.1155/2020/9434059
  • Kuyukina, M. S.; Ivshina, I. B.; Baeva, T. A.; Kochina, O. A.; Gein, S. V.; Chereshnev, V. A. Trehalolipids Biosurfactants from Non-Pathogenic Rhodococcus Actinobacteria with Diverse Immunomodulatory Activities. New Biotechnol. 2015, 32, 559–568.
  • Javee, A.; Karuppan, R.; Subramani, N. Bioactive Glycolipid Biosurfactant from Seaweed Sargassum Myriocystum Associated Bacteria Streptomyces sp. SNJASM6. Biocatal. Agric. Biotechnol. 2020, 23, 101505.
  • Naughton, P. J.; Marchant, R.; Naughton, V.; Banat, I. M. Microbial Biosurfactants: Current Trends and Applications in Agricultural and Biomedical Industries. J. Appl. Microbiol. 2019, 127, 12–28.
  • Gruninger, J.; Delavault, A.; Ochsenreither, K. Enzymatic Glycolipid Surfactant Synthesis from Renewables. Proc. Biochem. 2019, 87, 45–54.
  • Fenibo, E. O.; Ijoma, G. N.; Selvarajan, R.; Chikere, C. B. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms. 2019, 7, 581.
  • Jadhav, J.; Dutta, S.; Kale, S.; Pratap, A. Fermentative Production of Rhamnolipid and Purification by Adsorption Chromatography. Prep. Biochem. Biotechnol. 2018, 48, 234–241.
  • Oni, F. E.; Geudens, N.; Onyeka, J. T.; Olorunleke, O. F.; Salami, A. E.; Omoboye, O. O.; Arias, A. A.; Adiobo, A.; de Neve, S.; Ongena, M.; et al. Cyclic Lipopeptide-Producing Pseudomonas koreensis Group Strains Dominate the Cocoyam Rhizosphere of a Pythium Root Rot Suppressive Soil Contrasting with P. putida Prominence in Conducive Soils. Environ. Microbiol. 2020, 00, 00–00.
  • Schlusselhuber, M.; Godard, J.; Sebban, M.; Bernay, B.; Garon, D.; Seguin, V.; Oulyadi, H.; Desmasures, N. Characterization of Milkisin, a Novel Lipopeptide with Antimicrobial Properties Produced by Pseudomonas sp. UCMA 17988 Isolated from Bovine Raw Milk. Front. Microbiol 2018, 9, 1030.
  • Perfumo, A.; Rudden, M.; Marchant, R.; Banat, I. M. Biodiversity of Biosurfactants and Roles in Enhancing the (Bio) Availability of Hydrophobic Substrates. In Cellular Ecophysiology of Microbe, Handbook of Hydrocarbon and Lipid Microbiology; Krell, T., Ed.; Springer: Cham, 2017; pp. 1–29.
  • Harms, H.; Konig, G. M.; Schaberle, T. F. Production of Antimicrobial Compounds by Fermentation. Methods Mol. Biol. 2017, 1520, 49–61.
  • Liu, F.; Wang, Z.; Manglekar, R. R.; Geng, A. Enhanced Cellulase Production through Random Mutagenesis of Talaromyces Pinophilus OPC4-1 and Fermentation Optimization. Proc. Biochem. 2020, 90, 12–22.
  • Sadh, P. K.; Kumar, S.; Chawla, P.; Duhan, J. S. Fermentation: A Boon for Production of Bioactive Compounds by Processing of Food Industries Wastes (by-Products). Molecules. 2018, 23, e2560.
  • Sekhon, K. K.; Khanna, S.; Cameotra, S. S. Enhanced Biosurfactant Production through Cloning of Three Genes and Role of Esterase in Biosurfactant Release. Microb. Cell Fact. 2011, 10, 49.
  • Hu, F.; Liu, Y.; Li, S. Rational Strain Improvement for Surfactin Production: Enhancing the Yield and Generating Novel Structures. Microb. Cell Fact. 2019, 18, 42.
  • El-Housseiny, G. S.; Aboshanab, K. M.; Aboulwafa, M. M.; Hassouna, N. A. Rhamnolipid Production by a Gamma Ray-Induced Pseudomonas aeruginosa Mutant Under Solid State Fermentation. AMB Express. 2019, 9, 7.
  • Pal, M. P.; Vaidya, B. K.; Desai, K. M.; Joshi, R. M.; Nene, S. N.; Kulkarni, B. D. Media Optimization for Biosurfactant Production by Rhodococcus erythropolis MTCC 2794: Artificial Intelligence versus a Statistical Approach. J. Ind. Microbiol. Biotechnol. 2009, 36, 747–756.
  • Suryawanshi, N.; Naik, S.; Eswari, J. S. Extraction and Optimization of Exopolysaccharide from Lactobacillus sp. Using Response Surface Methodology and Artificial Neural Networks. Prep. Biochem. Biotechnol. 2019, 49, 987–996.
  • Truppo, M. D. Biocatalysis in the Pharmaceutical Industries: The Need for Speed. ACS Med. Chem. Lett. 2017, 8, 476–480.
  • Wachtmeister, J.; Rother, D. Recent Advances in Whole Cell Biocatalysis Techniques Bridging from Investigative to Industrial Scale. Curr. Opin. Biotechnol. 2016, 42, 169–177.
  • Bausch, M.; Schultheiss, C.; Sieck, J. B. Recommendations for Comparison of Productivity between Fed-Batch and Perfusion Processes. Biotechnol. J. 2019, 14, 1700721.
  • Singh, P.; Patil, Y.; Rale, V. Biosurfactant Production: Emerging Trends and Promising Strategies. J. Appl. Microbiol. 2019, 126, 2–13.
  • Santos, D. K. F.; Rufino, R. D.; Luna, J. M.; Santos, V. A.; Sarubbo, J. A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401.
  • Saha, S. P.; Mazumdar, D. Optimization of Process Parameter for Alpha-Amylase Produced by Bacillus cereus amy3 Using One-Factor-at-a-Time (OFAT) and Central Composite Rotatable (CCRD) Design-Based Response Surface Methodology (RSM). Biocatal. Agric. Biotechnol. 2019, 19, 101168.
  • Ekpenyong, M. G.; Antai, S. P.; Asitok, A. D.; Ekpo, B. O. Plackett-Burman Design and Response Surface Optimization of Medium Trace Nutrients for Glycolipopeptide Biosurfactant Production. Iran. Biomed. J. 2017, 21, 249–260.
  • Ebadipour, N.; Bagheri Lotfabad, T.; Yaghmaei, S.; RoostaAzad, R. Optimization of Low-Cost Biosurfactant Production from Agricultural Residues Through Response Surface Methodology. Prep. Biochem. Biotechnol. 2016, 46, 30–38.
  • Ekpenyong, M.; Antai, S.; Asitok, A.; Ekpo, B. Response Surface Modeling and Optimization of Major Medium Variables for Glycolipopeptide Production. Biocatal. Agric. Biotechnol. 2017, 10, 113–121.
  • Ekpenyong, M. G.; Asitok, A. D.; Antai, S. P.; Ekpo, B. O.; Antigha, R. E.; Ogarekpe, N. Statistical and Artificial Neural Network Approaches to Modeling and Optimization of Fermentation Conditions for Production of a Surface/Bioactive Glyco-Lipo-Peptide. Int. J. Pept. Res. Ther. 2021, 27, 475–495.
  • Sivapathasekaran, C.; Mukherjee, S.; Ray, A.; Gupta, A.; Sen, R. Artificial Neural Network Modeling and Genetic Algorithm-Based Medium Optimization for the Improved Production of Marine Biosurfactant. Bioresour. Technol. 2010, 101, 2884–2887.
  • Raza, Z. A.; Khan, M. S.; Khalid, Z. M.; Rehman, A. Production Kinetics and Tensio- Active Characteristics of Biosurfactant from a Pseudomonas aeruginosa Mutant Grown on Waste Frying Oils. Biotechnol. Lett. 2006, 28, 1623–1631.
  • Raza, Z. A.; Khan, M. S.; Khalid, Z. M. Evaluation of Distant Carbon Sources in Biosurfactant Production by a Gamma Ray-Induced Pseudomonas putida Mutant. Proc. Biochem. 2007, 42, 686–692.
  • Rodrigues, L.; Moldes, A.; Teixeira, J.; Oliveira, R. Kinetic Study of Fermentative Biosurfactant Production by Lactobacillus Strains. Biochem. Eng. J. 2006, 28, 109–116.
  • Rodrigues, L. R.; Teixeira, J. A.; Oliveira, R. Low-Cost Fermentative Medium for Biosurfactant Production by Probiotic Bacteria. Biochem. Eng. J. 2006, 32, 135–142.
  • Heryani, H.; Putra, M. D. Kinetic Study and Modeling of Biosurfactant Production Using Bacillus sp. Strain. Electron. J. Biotechnol. 2017, 27, 49–54.
  • Asitok, A. D.; Antai, S. P.; Ekpenyong, M. G. Water Soluble Fraction of Crude Oil Uncouples Protease Biosynthesis and Activity in Hydrocarbonoclastic Bacteria; Implications for Natural Attenuation. Int. J. Sci. 2017, 6, 5–21.
  • Iboyo, A. E.; Asitok, A. D.; Ekpenyong, M. G.; Antai, S. P. Selection of Enterobacter cloacae Strain POPE6 for Fermentative Production of Extracellular Lipase on Palm Kernel Oil Processing Effluent. Int. J. Sci. 2017, 6, 1–17.
  • Nathan, V. K.; Vijayan, J.; Parvathi, A. Optimization of Urease Production by Bacillus halodurans PO15: A Mangrove Bacterium from Poovar Mangroves, India. Mar. Life Sci. Technol. 2020, 2, 194–202.
  • Asitok, A. D.; Ekpenyong, M. G. Statistical Distribution of Halotolerant/Halophilic Biosurfactant-Producing Yeasts in Qua Iboe Estuarine Sediments. Int. J. Sci. 2019, 8, 91–104.
  • Pramanik, S. K.; Suja, F. B.; Porhemmat, M.; Pramanik, B. K. Performance and Kinetic Model of a Single-Stage Anaerobic Digestion System Operated at Different Successive Operating Stages for the Treatment of Food Waste. Processes. 2019, 7, 600.
  • Mercier, P.; Yerushalmi, L.; Rouleau, D.; Dochain, D. Kinetics of Lactic Acid Fermentation on Glucose and Corn by Lactobacillus amylophilus. J. Chem. Technol. Biotechnol. 2007, 55, 111–121.
  • Surendhiran, D.; Vijay, M.; Sivaprakash, B.; Sirajunnisa, A. Kinetic Modeling of Microalgal Growth and Lipid Synthesis for Biodiesel Production. 3 Biotech. 2015, 5, 663–669.
  • Karri, R. R.; Tanzifi, M.; Yaraki, M. T.; Sahu, J. N. Optimization and Modeling of Methyl Orange Adsorption onto Polyaniline Nano-Adsorbent through Response Surface Methodology and Differential Evolution Embedded Neural Network. J. Environ. Manage. 2018, 223, 517–529.
  • Crater, J. S.; Lievense, J. C. Scale-up of Industrial Microbial Processes. FEMS Microbiol. Lett. 2018, 365, 138.
  • Ekpenyong, M. G.; Antai, S. P.; Essien, J. P. Quantitative and Qualitative Assessment of Hydrocarbon-Degrading Bacteria and Fungi in Qua Iboe Estuary, Nigeria. Res. J. Microbiol. 2007, 2, 415–425.
  • Wei, Y. H.; Chou, C. L.; Chang, J. S. Rhamnolipid Production by Indigenous Pseudomonas aeruginosa J4 Originating from Petrochemical Wastewater. Biochem. Eng. J. 2005, 27, 146–154.
  • Zhao, F.; Liang, X.; Ban, Y.; Han, S.; Zhang, J.; Zhang, Y.; Ma, F. Comparison of Methods to Quantify Rhamnolipid and Optimization of Oil Spreading Method. TSD. 2016, 53, 243–248.
  • Walter, V.; Syldatk, C.; Hausmann, R. Screening Concepts for the Isolation of Biosurfactant Producing Microorganisms. Adv. Exp. Med. Biol. 2010, 672, 1–13.
  • Shiloach, J.; Rinas, U. Bacterial Cultivation for Production of Proteins and Other Biological Products. In Manual of Industrial Microbiology and Biotechnology; Baltz, R. H.; Demain, A. L.; Davies, J. E.; Bull, A. T.; Beth Junker, B.; Katz, L.; Lynd, L. R.; Masurekar, P.; Reeves, C. D.; Zhao, H., Eds.; ASM Press: Washington DC, 2010; pp. 132–144
  • Nurfarahin, A. H.; Mohamed, M. S.; Phang, L. Y. Development of Palm Fatty Acid Distillate Containing Medium for Biosurfactant Production by Pseudomonas sp. LM19. Molecules. 2019, 24, 2613.
  • Anvari, S.; Hajfarajollah, H.; Mokhtarani, B.; Noghabi, K. A. Physiochemical and Thermodynamic Characterization of Lipopeptide Biosurfactant Secreted by Bacillus tequilensis HK01. RSC Adv. 2015, 5, 91836–91845.
  • Freitas, B. G.; Brito, J. G. M.; Brasileiro, P. P. F.; Rufino, R. D.; Luna, J. M.; Santos, V. A.; Sarubbo, L. A. Formulation of a Commercial Biosurfactant for Application as a Dispersant of Petroleum and by-Products Spilled in Oceans. Front. Microbiol. 2016, 7, 1646.
  • Soares da Silva, R. d C. F.; de Almeida, D. G.; Brasileiro, P. P. F.; Rufino, R. D.; de Luna, J. M.; Sarubbo, L. A. Production, Formulation and Cost Estimation of a Commercial Biosurfactant. Biodegradation. 2019, 30, 191–201.
  • Sekhon-Randhawa, K. K.; Rahman, P. K. S. M. Rhamnolipid Biosurfactants – Past Present, and Future Scenario of Global Market. Front. Microbiol. 2014, 5, 454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.