225
Views
4
CrossRef citations to date
0
Altmetric
Articles

Enhancing immobilization of Aspergillus oryzae ST11 lipase on polyacrylonitrile nanofibrous membrane by bovine serum albumin and its application for biodiesel production

ORCID Icon &

Reference

  • Mekhilef, S.; Siga, S.; Saidur, R. A Review on Palm Oil Biodiesel as a Source of Renewable Fuel. Renew. Sust. Energy Rev. 2011, 15, 1937–1949. DOI: 10.1016/j.rser.2010.12.012.
  • Tan, T.; Lu, J.; Nie, K.; Deng, L.; Wang, F. Biodiesel Production with Immobilized Lipase: A Review. Biotechnol. Adv. 2010, 28, 628–634. DOI: 10.1016/j.biotechadv.2010.05.012.
  • Jegannathan, K. R.; Jun-Yee, L.; Chan, E. S.; Ravindra, P. Production of Biodiesel from Palm Oil Using Liquid Core Lipase Encapsulated in κ-Carrageenan. Fuel 2010, 89, 2272–2277. DOI: 10.1016/j.fuel.2010.03.016.
  • Sethi, B. K.; Nanda, P. K.; Sahoo, S. Characterization of Biotechnologically Relevant Extracellular Lipase Produced by Aspergillus terreus NCFT 4269.10. Braz. J. Microbiol. 2016, 47, 143–149. DOI: 10.1016/j.bjm.2015.11.026.
  • Tsuzuki, W.; Kobayashi, S.; Suzuki, T. A Serine Protease Triad Forms the Catalytic Centre of a Triacylglycerol Lipase. J. Am. Oil Chem. Soc. 1998, 75, 767–770. DOI: 10.1039/p19910001245.
  • Hasan, F.; Shah, A. A.; Hameed, A. Industrial Applications of Microbial Lipases. Enzyme Microb. Technol. 2006, 39, 235–251. DOI: 10.1016/j.enzmictec.2005.10.016.
  • Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R. C.; Fernandez-Lafuente, R. Strategies for the One-Step Immobilization-Purification of Enzymes as Industrial Biocatalysts. Biotechnol. Adv. 2015, 33, 435–456. DOI: 10.1016/j.biotechadv.2015.03.006.
  • Rios, N. S.; Neto, D. M. A.; dos Santos, J. C. S.; Fechine, P. B. A.; Fernández-Lafuente, R.; Gonçalves, L. R. B. Comparison of the Immobilization of Lipase from Pseudomonas fluorescens on Divinylsulfone or P-Benzoquinone Activated Support. Int. J. Biol. Macromol. 2019, 134, 936–945. DOI: 10.1016/j.ijbiomac.2019.05.106.
  • de Oliveira, U. M. F.; Lima de Matos, L. J. B.; de Souza, M. C. M.; Pinheiro, B. B.; dos Santos, J. C. S.; Gonçalves, L. R. B. Efficient Biotechnological Synthesis of Flavor Esters Using a Low-Cost Biocatalyst with Immobilized Rhizomucor miehei Lipase. Mol. Biol. Rep. 2019, 46, 597–608. DOI: 10.1007/s11033-018-4514-z.
  • dos Santos, J. C. S.; Bonazza, H. L.; de Matos, L. J. B. L.; Carneiro, E. A.; Barbosa, O.; Fernandez-Lafuente, R.; Gonçalves, L. R. B.; de Sant’ Ana, H. B.; Santiago-Aguiar, R. S. Immobilization of CALB on Activated Chitosan: Application to Enzymatic Synthesis in Supercritical and near-Critical Carbon Dioxide. Biotechnol. Rep. 2017, 14, 16–26. DOI: 10.1016/j.btre.2017.02.003.
  • Moreira, K.; da, S.; de Oliveira, A. L. B.; Júnior, L. S. d M.; Monteiro, R. R. C.; da Rocha, T. N.; Menezes, F. L.; Fechine, L. M. U. D.; Denardin, J. C.; Michea, S.; Freire, R. M.; Fechine .; et al. Lipase from Rhizomucor Miehei Immobilized on Magnetic Nanoparticles: Performance in Fatty Acid Ethyl Ester (FAEE) Optimized Production by the Taguchi Method. Front. Bioeng. Biotechnol. 2020, 8, 1–17. DOI: 10.3389/fbioe.2020.00693.
  • Ranganathan, S. V.; Narasimhan, S. L.; Muthukumar, K. An Overview of Enzymatic Production of Biodiesel. Bioresour. Technol. 2008, 99, 3975–3981. DOI: 10.1016/j.biortech.2007.04.060.
  • Guldhe, A.; Singh, B.; Mutanda, T.; Permaul, K.; Bux, F. Advances in Synthesis of Biodiesel via Enzyme Catalysis: Novel and Sustainable Approaches. Renew. Sust. Energy Rev. 2015, 41, 1447–1464. DOI: 10.1016/j.rser.2014.09.035.
  • Aguieiras, E. C. G.; de Barros, D. S. N.; Sousa, H.; Fernandez-Lafuente, R.; Freire, D. M. G. Influence of the Raw Material on the Final Properties of Biodiesel Produced Using Lipase from Rhizomucor miehei Grown on Babassu Cake as Biocatalyst of Esterification Reactions. Renew. Energy 2017, 113, 112–118. DOI: 10.1016/j.renene.2017.05.090.
  • Hurlburt, T. J.; Liu, W. C.; Ye, R.; Somorjai, G. A. Surface Science Approach to the Molecular Level Integration of the Principles in Heterogeneous, Homogeneous, and Enzymatic Catalysis. Top. Catal. 2018, 61, 1210–1217. DOI: 10.1007/s11244-018-0975-5.
  • Fu, C. C.; Hung, T. C.; Su, C. H.; Suryani, D.; Wu, W. T.; Dai, W. C.; Yeh, Y. T. Immobilization of Calcium Oxide onto Chitosan Beads as a Heterogeneous Catalyst for Biodiesel Production. Polym. Int. 2011, 60, 957–962. DOI: 10.1002/pi.3031.
  • Boey, P. L.; Maniam, G. P.; Hamid, S. A. Performance of Calcium Oxide as a Heterogeneous Catalyst in Biodiesel Production: A Review. Chem. Eng. J. 2011, 168, 15–22. DOI: 10.1016/j.cej.2011.01.009.
  • Sai, B. A. V. S. L.; Subramaniapillai, N.; Khadhar Mohamed, M. S. B.; Narayanan, A. Optimization of Continuous Biodiesel Production from Rubber Seed Oil (RSO) Using Calcined Eggshells as Heterogeneous Catalyst. J. Environ. Chem. Eng. 2020, 8, 103603. DOI: 10.1016/j.jece.2019.103603.
  • Sai Bharadwaj, A. V. S. L.; Singh, M.; Niju, S.; Meera Sheriffa Begum, K. M.; Anantharaman, N. Biodiesel Production from Rubber Seed Oil Using Calcium Oxide Derived from Eggshell as Catalyst-Optimization and Modeling Studies. Green Process. Synth. 2019, 8, 430–442. DOI: 10.1515/gps-2019-0011.
  • Bharadwaj, A. V. S. L. S.; Niju, S.; Meera Sheriffa Begum, K. M.; Narayanan, A. Performance and Evaluation of Calcined Limestone as Catalyst in Biodiesel Production from High Viscous Nonedible Oil. Environ. Prog. Sustain. Energy 2020, 39, 1–13. DOI: 10.1002/ep.13342.
  • Soler, L.; Illanes, A.; Wilson, L. Immobilization of Alcaligenes sp. Lipase as Catalyst for the Transesterification of Vegetable Oils to Produce Biodiesel. Catal. Today 2016, 259, 177–182. DOI: 10.1016/j.cattod.2015.06.025.
  • Rehman, S.; Bhatti, H. N.; Bilal, M.; Asgher, M. Cross-Linked Enzyme Aggregates (CLEAs) of Pencilluim notatum Lipase Enzyme with Improved Activity, Stability and Reusability Characteristics. Int. J. Biol. Macromol. 2016, 91, 1161–1169. DOI: 10.1016/j.ijbiomac.2016.06.081.
  • Grajales-Hernández, D. A.; Velasco-Lozano, S.; Armendáriz-Ruiz, M. A.; Rodríguez-González, J. A.; Camacho-Ruíz, R. M.; Asaff-Torres, A.; López-Gallego, F.; Mateos-Díaz, J. C. Carrier-Bound and Carrier-Free Immobilization of Type a Feruloyl Esterase from Aspergillus niger: Searching for an Operationally Stable Heterogeneous Biocatalyst for the Synthesis of Butyl Hydroxycinnamates. J. Biotechnol. 2020, 316, 6–16. DOI: 10.1016/j.jbiotec.2020.04.004.
  • Fernandez-Lafuente, R.; Barbosa, O.; Torres, R.; Ortiz, C. Versatility of Glutaraldehyde to Immobilize Lipases: Effect of the Immobilization Protocol on the Properties of Lipase B from Candida antarctica. Process Biochem. 2012, 47, 1220–1227. DOI: 10.1016/j.procbio.2012.04.019.
  • Bilal, M.; Asgher, M.; Cheng, H.; Yan, Y.; Iqbal, H. M. N. Multi-Point Enzyme Immobilization, Surface Chemistry, and Novel Platforms: A Paradigm Shift in Biocatalyst Design. Crit. Rev. Biotechnol. 2019, 39, 202–219. DOI: 10.1080/07388551.2018.1531822.
  • Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R. C.; Fernandez-Lafuente, R. Glutaraldehyde in Bio-Catalysts Design: A Useful Crosslinker and a Versatile Tool in Enzyme Immobilization. RSC Adv. 2014, 4, 1583–1600. DOI: 10.1039/C3RA45991H.
  • Santos, J. C. S. D.; Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Rodrigues, R. C.; Fernandez-Lafuente, R. Importance of the Support Properties for Immobilization or Purification of Enzymes. ChemCatChem 2015, 7, 2413–2432. DOI: 10.1002/cctc.201500310.
  • Shah, S.; Sharma, A.; Gupta, M. N. Preparation of Cross-Linked Enzyme Aggregates by Using Bovine Serum Albumin as a Proteic Feeder. Anal. Biochem. 2006, 351, 207–213. DOI: 10.1016/j.ab.2006.01.028.
  • Guauque Torres, M. P.; Foresti, M. L.; Ferreira, M. L. CLEAs of Candida antarctica Lipase B (CALB) with a Bovine Serum Albumin (BSA) Cofeeder Core: Study of Their Catalytic Activity. Biochem. Eng. J. 2014, 90, 36–43. DOI: 10.1016/j.bej.2014.05.004.
  • Cruz, J.; Barbosa, O.; Rodrigues, R. C.; Fernandez-Lafuente, R.; Torres, R.; Ortiz, C. Optimized Preparation of CALB-CLEAs by Response Surface Methodology: The Necessity to Employ a Feeder to Have an Effective Crosslinking. J. Mol. Catal. B Enzym. 2012, 80, 7–14. DOI: 10.1016/j.molcatb.2012.04.013.
  • Yördem, O. S.; Papila, M.; Menceloğlu, Y. Z. Effects of Electrospinning Parameters on Polyacrylonitrile Nanofiber Diameter: An Investigation by Response Surface Methodology. Mater. Des. 2008, 29, 34–44. DOI: 10.1016/j.matdes.2006.12.013.
  • Sakai, S.; Liu, Y.; Yamaguchi, T.; Watanabe, R.; Kawabe, M.; Kawakami, K. Immobilization of Pseudomonas cepacia Lipase onto Electrospun Polyacrylonitrile Fibers through Physical Adsorption and Application to Transesterification in Nonaqueous Solvent. Biotechnol. Lett. 2010, 32, 1059–1062. DOI: 10.1007/s10529-010-0279-8.
  • Zhang, D. H.; Yuwen, L. X.; Peng, L. J. Parameters Affecting the Performance of Immobilized Enzyme. J. Chem. 2013, 2013, 1–7. DOI: 10.1155/2013/946248.
  • Tischer, W.; Wedekind, F. Immobilized Enzymes: Methods and Applications. In Biocatalysis- From Discovery to Application: Fessner, W. D., Eds.; Topics in Current Chemistry; Springer: Berlin, 1999; pp. 95–126.
  • Li, S. F.; Fan, Y. H.; Hu, R. F.; Wu, W. T. Pseudomonas cepacia Lipase Immobilized onto the Electrospun PAN Nanofibrous Membranes for Biodiesel Production from Soybean Oil. J. Mol. Catal. B Enzym. 2011, 72, 40–45. DOI: 10.1016/j.molcatb.2011.04.022.
  • Li, S.-F.; Fan, Y.-H.; Hu, J.-F.; Huang, Y.-S.; Wu, W.-T. Immobilization of Pseudomonas cepacia Lipase onto the Electrospun PAN Nanofibrous Membranes for Transesterification Reaction. J. Mol. Catal. B Enzym. 2011, 73, 98–103. DOI: 10.1016/j.molcatb.2011.08.005.
  • Wang, Z. G.; Wan, L. S.; Xu, Z. K. Surface Engineerings of Polyacrylonitrile-Based Asymmetric Membranes towards Biomedical Applications: An Overview. J. Membr. Sci. 2007, 304, 8–23. DOI: 10.1016/j.memsci.2007.05.012.
  • Liu, W.; Cai, M.; He, Y.; Wang, S.; Zheng, J.; Xu, X. Development of Antibacterial Polyacrylonitrile Membrane Modified with a Covalently Immobilized Lysozyme. RSC Adv. 2015, 5, 84432–84438. DOI: 10.1039/C5RA14867G.
  • Zhang, G.; Meng, H.; Ji, S. Hydrolysis Differences of Polyacrylonitrile Support Membrane and Its Influences on Polyacrylonitrile-Based Membrane Performance. Desalination 2009, 242, 313–324. DOI: 10.1016/j.desal.2008.05.010.
  • Kwon, D. Y.; Rhee, J. S. A Simple and Rapid Colorimetric Method for Determination of Free Fatty Acids for Lipase Assay. J. Am. Oil Chem. Soc. 1986, 63, 89–92. DOI: 10.1007/BF02676129.
  • Ungcharoenwiwat, P.; Canyuk, B.; H-Kittikun, A. Synthesis of Jatropha Oil Based Wax Esters Using an Immobilized Lipase from Burkholderia sp. EQ3 and Lipozyme RM IM. Process Biochem. 2016, 51, 392–398. DOI: 10.1016/j.procbio.2015.12.019.
  • Fedosov, S. N.; Fernandes, N. A.; Firdaus, M. Y. Analysis of Oil-Biodiesel Samples by High Performance Liquid Chromatography Using the Normal Phase Column of New Generation and the Evaporative Light Scattering Detector. J. Chromatogr. A. 2014, 1326, 56–62. DOI: 10.1016/j.chroma.2013.12.043.
  • Paitaid, P.; H-Kittikun, A. Magnetic Cross-Linked Enzyme Aggregates of Aspergillus oryzae ST11 Lipase Using Polyacrylonitrile Coated Magnetic Nanoparticles for Biodiesel Production. Appl. Biochem. Biotechnol. 2020, 190, 1319–1332. DOI: 10.1007/s12010-019-03196-7.
  • Godjevargova, T.; Nenkova, R.; Dimova, N. Covalent Immobilization of Glucose Oxidase onto New Modified Acrylonitrile Copolymer/Silica Gel Hybrid Supports. Macromol. Biosci. 2005, 5, 760–766. DOI: 10.1002/mabi.200400225.
  • Hung, T. C.; Fu, C. C.; Su, C. H.; Chen, J. Y.; Wu, W. T.; Lin, Y. S. Immobilization of Cellulase onto Electrospun Polyacrylonitrile (PAN) Nanofibrous Membranes and Its Application to the Reducing Sugar Production from Microalgae. Enzyme Microb. Technol. 2011, 49, 30–37. DOI: 10.1016/j.enzmictec.2011.04.012.
  • Mancini, A.; Imperlini, E.; Nigro, E.; Montagnese, C.; Daniele, A.; Orrù, S.; Buono, P. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health. Molecules 2015, 20, 17339–17361. DOI: 10.3390/molecules200917339.
  • Neghlani, P. K.; Rafizadeh, M.; Taromi, F. A. Preparation of Aminated-Polyacrylonitrile Nanofiber Membranes for the Adsorption of Metal Ions: Comparison with Microfibers. J. Hazard. Mater. 2011, 186, 182–189. DOI: 10.1016/j.jhazmat.2010.10.121.
  • Li, Y.; Wang, H.; Lu, J.; Chu, A.; Zhang, L.; Ding, Z.; Xu, S.; Gu, Z.; Shi, G. Preparation of Immobilized Lipase by Modified Polyacrylonitrile Hollow Membrane Using Nitrile-Click Chemistry. Bioresour. Technol. 2019, 274, 9–17. DOI: 10.1016/j.biortech.2018.11.075.
  • Sanchez, A.; Cruz, J.; Rueda, N.; Dos Santos, J. C. S.; Torres, R.; Ortiz, C.; Villalonga, R.; Fernandez-Lafuente, R. Inactivation of Immobilized Trypsin under Dissimilar Conditions Produces Trypsin Molecules with Different Structures. RSC Adv. 2016, 6, 27329–27334. DOI: 10.1039/C6RA03627A.
  • Ondul, E.; Dizge, N.; Albayrak, N. Immobilization of Candida antarctica a and Thermomyces lanuginosus Lipases on Cotton Terry Cloth Fibrils Using Polyethyleneimine. Colloids Surf. B Biointerfaces 2012, 95, 109–114. DOI: 10.1016/j.colsurfb.2012.02.020.
  • Rodrigues, J.; Canet, A.; Rivera, I.; Osório, N. M.; Sandoval, G.; Valero, F.; Ferreira-Dias, S. Biodiesel Production from Crude Jatropha Oil Catalyzed by Non-Commercial Immobilized Heterologous Rhizopus oryzae and Carica papaya Lipases. Bioresour. Technol. 2016, 213, 88–95. DOI: 10.1016/j.biortech.2016.03.011.
  • Zhu, J.; Sun, G. Lipase Immobilization on Glutaraldehyde-Activated Nanofibrous Membranes for Improved Enzyme Stabilities and Activities. React. Funct. Polym. 2012, 72, 839–845. DOI: 10.1016/j.reactfunctpolym.2012.08.001.
  • Guauque Torres, M. P.; Foresti, M. L.; Ferreira, M. L. Effect of Different Parameters on the Hydrolytic Activity of Cross-Linked Enzyme Aggregates (CLEAs) of Lipase from Thermomyces lanuginosa. Biochem. Eng. J. 2013, 72, 18–23. DOI: 10.1016/j.bej.2012.12.010.
  • Gupta, A.; Dhakate, S. R.; Pahwa, M.; Sinha, S.; Chand, S.; Mathur, R. B. Geranyl Acetate Synthesis Catalyzed by Thermomyces lanuginosus Lipase Immobilized on Electrospun Polyacrylonitrile Nanofiber Membrane. Process Biochem. 2013, 48, 124–132. DOI: 10.1016/j.procbio.2012.09.028.
  • Bezerra, R. M.; Monteiro, R. R. C.; Neto, D. M. A.; da Silva, F. F. M.; de Paula, R. C. M.; de Lemos, T. L. G.; Fechine, P. B. A.; Correa, M. A.; Bohn, F.; Gonçalves, L. R. B.; dos Santos, J. C. S. A New Heterofunctional Support for Enzyme Immobilization: PEI Functionalized Fe3O4 MNPs Activated with Divinyl Sulfone. Application in the Immobilization of Lipase from Thermomyces lanuginosus. Enzyme Microb. Technol. 2020, 138, 109560 DOI: 10.1016/j.enzmictec.2020.109560.
  • Liou, J. H.; Wang, Z. H.; Chen, I. H.; Wang, S. S. S.; How, S. C.; Jan, J. S. Catalase Immobilized in Polypeptide/Silica Nanocomposites via Emulsion and Biomineralization with Improved Activities. Int. J. Biol. Macromol. 2020, 159, 931–940. DOI: 10.1016/j.ijbiomac.2020.05.138.
  • Agrawal, D. C.; Yadav, A.; Kesarwani, R.; Srivastava, O. N.; Kayastha, A. M. Immobilization of Fenugreek β-Amylase onto Functionalized Graphene Quantum Dots (GQDs) Using Box-Behnken Design: Its Biochemical, Thermodynamic and Kinetic Studies. Int. J. Biol. Macromol. 2020, 144, 170–182. DOI: 10.1016/j.ijbiomac.2019.12.033.
  • Doraiswamy, N.; Sarathi, M.; Pennathur, G. Cross-Linked Esterase Aggregates (CLEAs) Using Nanoparticles as Immobilization Matrix. Prep. Biochem. Biotechnol. 2019, 49, 270–278. DOI: 10.1080/10826068.2018.1536993.
  • Sazaki, G.; Ooshima, H.; Kato, J.; Harano, Y.; Hirokawa, N. Mechanism of Crystallization of Enzyme Protein Thermolysin. J. Cryst. Growth 1993, 130, 357–367. DOI: 10.1016/0022-0248(93)90521-W.
  • dos Santos, J. C. S.; Rueda, N.; Barbosa, O.; Millán-Linares, M. D. C.; Pedroche, J.; del Mar Yuste, M.; Gonçalves, L. R. B.; Fernandez-Lafuente, R. Bovine Trypsin Immobilization on Agarose Activated with Divinylsulfone: Improved Activity and Stability via Multipoint Covalent Attachment. J. Mol. Catal. B Enzym. 2015, 117, 38–44. DOI: 10.1016/j.molcatb.2015.04.008.
  • Rivero, C. W.; De Benedetti, E. C.; Gallego, F. L.; Pessela, B. C.; Guisán, J. M.; Trelles, J. A. Biosynthesis of an Antiviral Compound Using a Stabilized Phosphopentomutase by Multipoint Covalent Immobilization. J. Biotechnol. 2017, 249, 34–41. DOI: 10.1016/j.jbiotec.2017.03.027.
  • Halim, S. F. A.; Harun Kamaruddin, A. Catalytic Studies of Lipase on FAME Production from Waste Cooking Palm Oil in a Tert-Butanol System. Process Biochem. 2008, 43, 1436–1439. DOI: 10.1016/j.procbio.2008.08.010.
  • Wang, Y. D.; Shen, X. Y.; Li, Z. L.; Li, X.; Wang, F.; Nie, X. A.; Jiang, J. C. Immobilized Recombinant Rhizopus oryzae Lipase for the Production of Biodiesel in Solvent Free System. J. Mol. Catal. B Enzym. 2010, 67, 45–51. DOI: 10.1016/j.molcatb.2010.07.004.
  • Chen, G.; Ying, M.; Li, W. Enzymatic Conversion of Waste Cooking Oils into Alternative fuel-biodiesel. Appl. Biochem. Biotechnol. 2006, 129-132, 911–921. DOI: 10.1007/978-1-59745-268-7_76..
  • Lu, J.; Chen, Y.; Wang, F.; Tan, T. Effect of Water on Methanolysis of Glycerol Trioleate Catalyzed by Immobilized Lipase Candida sp. 99-125 in Organic Solvent System. J. Mol. Catal. B Enzym. 2009, 56, 122–125. DOI: 10.1016/j.molcatb.2008.05.004.
  • Maruyama, T.; Nakajima, M.; Uchikawa, S.; Nabetani, H.; Furusaki, S.; Seki, M. Oil-Water Interfacial Activation of Lipase for Interesterification of Triglyceride and Fatty Acid. J. Amer. Oil Chem. Soc. 2000, 77, 1121–1126. DOI: 10.1007/s11746-000-0176-4.
  • Yücel, S.; Terzioğlu, P.; Özçimen, D. In Biodiesel - Feedstocks, Production and Applications; Fang, Z., Eds.; IntechOpen: London, 2012; Chapter 8.
  • Lotti, M.; Pleiss, J.; Valero, F.; Ferrer, P. Effects of Methanol on Lipases: Molecular, Kinetic and Process Issues in the Production of Biodiesel. Biotechnol. J. 2015, 10, 22–30. DOI: 10.1002/biot.201400158.
  • Su, F.; Li, G. L.; Fan, Y. L.; Yan, Y. J. Enhancing Biodiesel Production via a Synergic Effect between Immobilized Rhizopus oryzae Lipase and Novozym 435. Fuel Process. Technol. 2015, 137, 298–304. DOI: 10.1016/j.fuproc.2015.03.013.
  • Talukder, M. M. R.; Wu, J. C.; Van Nguyen, T. B.; Fen, N. M.; Melissa, Y. L. S. Novozym 435 for Production of Biodiesel from Unrefined Palm Oil: Comparison of Methanolysis Methods. J. Mol. Catal. B Enzym. 2009, 60, 106–112. DOI: 10.1016/j.molcatb.2009.04.004.
  • Tamalampudi, S.; Talukder, M. R.; Hama, S.; Numata, T.; Kondo, A.; Fukuda, H. Enzymatic Production of Biodiesel from Jatropha Oil: A Comparative Study of Immobilized-Whole Cell and Commercial Lipases as a Biocatalyst. Biochem. Eng. J. 2008, 39, 185–189. DOI: 10.1016/j.bej.2007.09.002.
  • Jeong, G. T.; Park, D. H. Lipase-Catalyzed Transesterification of Rapeseed Oil for Biodiesel Production with Tert-Butanol. Appl. Biochem. Biotechnol. 2008, 148, 131–139. DOI: 10.1007/s12010-007-8050-x.
  • Huang, D.; Han, S.; Han, Z.; Lin, Y. Biodiesel Production Catalyzed by Rhizomucor miehei Lipase-Displaying Pichia pastoris Whole Cells in an Isooctane System. Biochem. Eng. J. 2012, 63, 10–14. DOI: 10.1016/j.bej.2010.08.009.
  • Romdhane, I. B.; Ben; Romdhane, Z.; Ben; Bouzid, M.; Gargouri, A.; Belghith, H. Application of a Chitosan-Immobilized Talaromyces thermophilus Lipase to a Batch Biodiesel Production from Waste Frying Oils. Appl. Biochem. Biotechnol. 2013, 171, 1986–2002. DOI: 10.1007/s12010-013-0449-y.
  • Adlercreutz, P. Immobilisation and Application of Lipases in Organic Media. Chem. Soc. Rev. 2013, 42, 6406–6436. DOI: 10.1039/c3cs35446f.
  • You, Q.; Yin, X.; Zhao, Y.; Zhang, Y. Biodiesel Production from Jatropha Oil Catalyzed by Immobilized Burkholderia cepacia Lipase on Modified Attapulgite. Bioresour. Technol. 2013, 148, 202–207. DOI: 10.1016/j.biortech.2013.08.143.
  • Pinheiro, M. P.; Rios, N. S.; Fonseca, T.; de, S.; Bezerra, F.; de, A.; Rodríguez-Castellón, E.; Fernandez-Lafuente, R.; Carlos de Mattos, M.; dos Santos, J. C. S.; Gonçalves, L. R. B. Kinetic Resolution of Drug Intermediates Catalyzed by Lipase B from Candida antarctica Immobilized on Immobead-350. Biotechnol. Prog. 2018, 34, 878–889. DOI: 10.1002/btpr.2630.
  • Galvão, W. S.; Pinheiro, B. B.; Golçalves, L. R. B.; de Mattos, M. C.; Fonseca, T. S.; Regis, T.; Zampieri, D.; dos Santos, J. C. S.; Costa, L. S.; Correa, M. A.; et al. Novel Nanohybrid Biocatalyst: Application in the Kinetic Resolution of Secondary Alcohols. J. Mater. Sci. 2018, 53, 14121–14137. DOI: 10.1007/s10853-018-2641-5.
  • Lage, F. A. P.; Bassi, J. J.; Corradini, M. C. C.; Todero, L. M.; Luiz, J. H. H.; Mendes, A. A. Preparation of a Biocatalyst via Physical Adsorption of Lipase from Thermomyces lanuginosus on Hydrophobic Support to Catalyze Biolubricant Synthesis by Esterification Reaction in a Solvent-Free System. Enzyme Microb. Technol. 2016, 84, 56–67. DOI: 10.1016/j.enzmictec.2015.12.007.
  • Xie, W.; Huang, M. Immobilization of Candida rugosa Lipase onto Graphene Oxide Fe3O4 Nanocomposite: Characterization and Application for Biodiesel Production. Energy Convers. Manag. 2018, 159, 42–53. DOI: 10.1016/j.enconman.2018.01.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.