442
Views
9
CrossRef citations to date
0
Altmetric
Review

Challenges and advancements in the pharmacokinetic enhancement of therapeutic proteins

, , , &

References

  • Zvonova, E. A.; Tyurin, A. A.; Soloviev, A. A.; Goldenkova-Pavlova, I. V. Strategies for Modulation of Pharmacokinetics of Recombinant Therapeutic Proteins. Biol. Bull. Rev. 2018, 8, 124–141.
  • (a) Mahmood, I.; Green, M. D. Pharmacokinetic and Pharmacodynamic Considerations in the Development of Therapeutic Proteins. Clin. Pharmacokinet. 2005, 44, 331–347. DOI: 10.2165/00003088-200544040-00001. (b) Mannuccio, P. M. Thromb. Haemost. 2015, 113, 165.
  • Gebauer, M.; Skerra, A. Prospects of PASylation® for the Design of Protein and Peptide Therapeutics with Extended Half-Life and Enhanced Action. Bioorg. Med. Chem. 2018, 26, 2882–2887. DOI: 10.1016/j.bmc.2017.09.016.
  • (a) Tan, H.; Su, W.; Zhang, W.; Wang, P.; Sattler, M.; Zou, P. Recent Advances in Half-Life Extension Strategies for Therapeutic Peptides and Proteins. Curr. Pharm. Des. 2018, 24, 4932–4946. DOI: 10.2174/1381612825666190206105232. (b) Strohl, W. R. Fusion Proteins for Half-Life Extension of Biologics as a Strategy to Make Biobetters. BioDrugs 2015, 29, 215–239. DOI: 10.2174/1381612825666190206105232.
  • Werle, M.; Bernkop-Schnürch, A. Strategies to Improve Plasma Half Life Time of Peptide and Protein Drugs. Amino Acids. 2006, 30, 351–367. DOI: 10.1007/s00726-005-0289-3.
  • Manning, M. C.; Chou, D. K.; Murphy, B. M.; Payne, R. W.; Katayama, D. S. Stability of Protein Pharmaceuticals: An Update. Pharm. Res. 2010, 27, 544–575. DOI: 10.1007/s11095-009-0045-6.
  • Erickson, H. P. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biol. Proced. Online 2009, 11, 32–51. DOI: 10.1007/s12575-009-9008-x.
  • Schlesinger, P. H.; Rodman, J. S.; Doebber, T. W.; Stahl, P. D.; Lee, Y. C.; Stowell, C. P.; Kuhlenschmidt, T. B. The Role of Extra-Hepatic Tissues in the Receptor-Mediated Plasma Clearance of Glycoproteins Terminated by Mannose or N-Acetylglucosamine. Biochem. J. 1980, 192, 597–606. DOI: 10.1042/bj1920597.
  • Kontermann, R. Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives; John Wiley & Sons: Weinheim, 2012.
  • Kontermann, R. E. Strategies for Extended Serum Half-Life of Protein Therapeutics. Curr. Opin. Biotechnol. 2011, 22, 868–876. DOI: 10.1016/j.copbio.2011.06.012.
  • Bush, M. A.; Matthews, J. E.; De Boever, E. H.; Dobbins, R. L.; Hodge, R. J.; Walker, S. E.; Holland, M. C.; Gutierrez, M.; Stewart, M. W. Safety, Tolerability, Pharmacodynamics and Pharmacokinetics of Albiglutide, a Long-Acting Glucagon-like Peptide-1 Mimetic, in Healthy Subjects. Diabetes. Obes. Metab. 2009, 11, 498–505. DOI: 10.1111/j.1463-1326.2008.00992.x.
  • Schmidt, S. R. Fusion Protein Technologies for Biopharmaceuticals: Applications and Challenges; John Wiley & Sons: Weinheim, 2013.
  • Latvala, S.; Jacobsen, B.; Otteneder, M. B.; Herrmann, A.; Kronenberg, S. Distribution of FcRn across Species and Tissues. J. Histochem. Cytochem. 2017, 65, 321–333. DOI: 10.1369/0022155417705095.
  • (a) AlQahtani, A. D.; O'Connor, D.; Domling, A.; Goda, S. K. Strategies for the Production of Long-Acting Therapeutics and Efficient Drug Delivery for Cancer Treatment. Biomed. Pharmacother. 2019, 113, 108750 DOI: 10.1016/j.biopha.2019.108750. (b) Chia, J.; Louber, J.; Glauser, I.; Taylor, S.; Bass, G. T.; Dower, S. K.; Gleeson, P. A.; Verhagen, A. M. Half-Life-Extended Recombinant Coagulation Factor IX-Albumin Fusion Protein Is Recycled via the FcRn-Mediated Pathway. J. Biol. Chem. 2018, 293, 6363–6373. DOI: 10.1074/jbc.M117.817064. (c) Czajkowsky, D. M.; Hu, J.; Shao, Z.; Pleass, R. J. Fc-Fusion Proteins: new Developments and Future Perspectives. EMBO Mol. Med. 2012, 4, 1015–1028. DOI: 10.1002/emmm.201201379.
  • (a) Nilvebrant, J.; Hober, S. The Albumin-Binding Domain as a Scaffold for Protein Engineering. Comput. Struct. Biotechnol. J. 2013, 6, e201303009 DOI: 10.5936/csbj.201303009. (b) Hoefman, S.; Ottevaere, I.; Baumeister, J.; Sargentini-Maier, M. L. Pre-Clinical Intravenous Serum Pharmacokinetics of Albumin Binding and Non-Half-Life Extended Nanobodies®. Antibodies 2015, 4, 141–156. DOI: 10.3390/antib4030141.
  • (a) Lejon, S.; Frick, I.-M.; Björck, L.; Wikström, M. ; Crystal Structure and Biological Implications of a Bacterial Albumin Binding Module in Complex with Human Serum albumin. J. Biol. Chem. 2004, 279, 42924–42928. and S. Svensson, DOI: 10.1074/jbc.M406957200. (b) Frejd, F. 2012, Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives; Wiley-VCH Verlag GmbH & Co: Weinheim. (c) Orlova, A.; Jonsson, A.; Rosik, D.; Lundqvist, H.; Lindborg, M.; Abrahmsen, L.; Ekblad, C.; Frejd, F. Y.; Tolmachev, V. Site-Specific Radiometal Labeling and Improved Biodistribution Using ABY-027, a Novel HER2-Targeting Affibody Molecule-Albumin-Binding Domain Fusion Protein. J. Nucl. Med. 2013, 54, 961–968. , DOI: 10.2967/jnumed.112.110700. (d) Zurdo, J.; Arnell, A.; Obrezanova, O.; Smith, N.; Gómez de la Cuesta, R.; Gallagher, T. R. A.; Michael, R.; Stallwood, Y.; Ekblad, C.; Abrahmsén, L.; Höidén-Guthenberg, I. Early Implementation of QbD in Biopharmaceutical Development: A Practical Example. BioMed Res. Int. 2015, 2015, 1–19. DOI: 10.1155/2015/605427. (e) Fridman, B.;Gülich, S.; Linhult, M.; Nygren, P.-Å.; Uhlén, M.; Hober, S. J. Biotechnol. 2000, 80, 169. (f) Nilvebrant, J.; Alm, T.; Hober, S.; Löfblom, J. Engineering Bispecificity into a Single Albumin-Binding Domain. PLoS One. 2011, 6, e25791. DOI: 10.1371/journal.pone.0025791. (g) Nilvebrant, J.; Åstrand, M.; Löfblom, J.; Hober, S. Development and Characterization of Small Bispecific albumin-binding domains with high affinity for ErbB3. Cell. Mol. Life Sci. 2013, 70, 3973–3985. DOI: 10.1007/s00018-013-1370-9.
  • O’Connor-Semmes, R. L.; Lin, J.; Hodge, R. J.; Andrews, S.; Chism, J.; Choudhury, A.; Nunez, D. J. GSK2374697, a Novel Albumin-Binding Domain Antibody (AlbudAb), Extends Systemic Exposure of Exendin-4: First Study in Humans—PK/PD and Safety. Clin. Pharmacol. Ther. 2014, 96, 704–712. DOI: 10.1038/clpt.2014.187.
  • Levy, O. E.; Jodka, C. M.; Ren, S. S.; Mamedova, L.; Sharma, A.; Samant, M.; D'Souza, L. J.; Soares, C. J.; Yuskin, D. R.; Jin, L. J.; et al. Novel Exenatide Analogs with Peptidic Albumin Binding Domains: Potent Anti-Diabetic Agents with Extended Duration of Action. PLoS One. 2014, 9, e87704 DOI: 10.1371/journal.pone.0087704.
  • Fares, F. Half-Life Extension through O-Glycosylation; Chichester: Wiley, 2012.
  • Costa, A. R.; Rodrigues, M. E.; Henriques, M.; Oliveira, R.; Azeredo, J. Glycosylation: Impact, Control and Improvement during Therapeutic Protein production. Crit. Rev. Biotechnol. 2014, 34, 281–299. DOI: 10.3109/07388551.2013.793649.
  • (a) Solá, R. J.; Griebenow, K. Glycosylation of Therapeutic Proteins: An Effective Strategy to Optimize Efficacy. BioDrugs 2010, 24, 9–21. DOI: 10.2165/11530550-000000000-00000. (b) Zhong, X.; Somers, W. In Integrative Proteomics. IntechOpen: Rijeka, 2012.
  • Samoudi, M.; Minuchehr, Z.; Harcum, S. W.; Tabandeh, F.; Yeganeh, N. O.; Khodabandeh, M. Rational Design of Glycoengineered Interferon-β Analogs with Improved Aggregation State: experimental Validation. Protein Eng. Des. Sel. 2017, 30, 23–30. DOI: 10.1093/protein/gzw058.
  • Samoudi, M.; Tabandeh, F.; Minuchehr, Z.; Ahangari Cohan, R.; Nouri Inanlou, D.; Khodabandeh, M.; Sabery Anvar, M. Rational Design of Hyper-Glycosylated Interferon Beta Analogs: A Computational Strategy for Glycoengineering. J. Mol. Graph. Model. 2015, 56, 31–42. DOI: 10.1016/j.jmgm.2014.12.001.
  • DeAngelis, P. L.; Liebner, R.; Meyer, M.; Hey, T.; Winter, G.; Besheer, A. Head to Head Comparison of the Formulation and Stability of Concentrated Solutions of HESylated versus PEGylated Anakinra. J. Pharm. Sci. 2015, 104, 515–526. DOI: 10.1002/jps.24253.
  • DeAngelis, P. L. Google Patents, 2016.
  • Liebner, R.; Mathaes, R.; Meyer, M.; Hey, T.; Winter, G.; Besheer, A. Protein HESylation for Half-Life Extension: synthesis, Characterization and Pharmacokinetics of HESylated Anakinra. Eur. J. Pharm. Biopharm. 2014, 87, 378–385. DOI: 10.1016/j.ejpb.2014.03.010.
  • (a) Hey, T.; Knoller, H.; Vorstheim, P. Half-Life Extension through HESylation®; Wiley-VCH: Weinheim, Germany, 2012; (b) Constantinou, A.; Epenetos, A. A.; Hreczuk-Hirst, D.; Jain, S.; Deonarain, M. P. Modulation of Antibody Pharmacokinetics by Chemical Polysialylation. Bioconjugate Chem. 2008, 19, 643–650. DOI: 10.1021/bc700319r.
  • (a) Roberts, M. J.; Bentley, M. D.; Harris, J. M. Chemistry for Peptide and Protein PEGylation. Adv. Drug Deliv. Rev. 2012, 64, 116–127. DOI: 10.1016/j.addr.2012.09.025. (b) Qi, Y.; Chilkoti, A. Protein-Polymer Conjugation-Moving beyond PEGylation. Curr. Opin. Chem. Biol. 2015, 28, 181–193. DOI: 10.1016/j.cbpa.2015.08.009.
  • Cohan, R. A.; Madadkar-Sobhani, A.; Khanahmad, H.; Roohvand, F.; Aghasadeghi, M. R.; Hedayati, M. H.; Barghi, Z.; Ardestani, M. S.; Inanlou, D. N.; Norouzian, D. Design, Modeling, Expression, and Chemoselective PEGylation of a New Nanosize Cysteine Analog of Erythropoietin. Int. J. Nanomedicine. 2011, 6, 1217–1227. DOI: 10.2147/IJN.S19081.
  • FDA Approved PEGylated Drugs 2020, Biochempeg Scientific Inc., 2019, https://www.biochempeg.com/article/58.html.
  • Rajan, R. S.; Li, T.; Aras, M.; Sloey, C.; Sutherland, W.; Arai, H.; Briddell, R.; Kinstler, O.; Lueras, A. M. K.; Zhang, Y.; et al. Modulation of Protein Aggregation by Polyethylene Glycol Conjugation: GCSF as a Case Study. Protein Sci. 2006, 15, 1063–1075. DOI: 10.1110/ps.052004006.
  • Baumann, A.; Tuerck, D.; Prabhu, S.; Dickmann, L.; Sims, J. Pharmacokinetics, Metabolism and Distribution of PEGs and PEGylated Proteins: Quo Vadis? Drug Discov. Today 2014, 19, 1623–1631. DOI: 10.1016/j.drudis.2014.06.002.
  • Yang, Q.; Lai, S. K. Anti-PEG Immunity: Emergence, Characteristics, and Unaddressed Questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 655–677. DOI: 10.1002/wnan.1339.
  • Hedayati, M. H.; Norouzian, D.; Aminian, M.; Teimourian, S.; Ahangari Cohan, R.; Sardari, S.; Khorramizadeh, M. R. Molecular Design, Expression and Evaluation of PASylated Human Recombinant Erythropoietin with Enhanced Functional Properties. Protein J. 2017, 36, 36–48. DOI: 10.1007/s10930-017-9699-9.
  • Zhang, P.; Sun, F.; Liu, S.; Jiang, S. Anti-PEG Antibodies in the Clinic: Current Issues and beyond PEGylation. J. Control Release 2016, 244, 184–193. DOI: 10.1016/j.jconrel.2016.06.040.
  • Buscaglia, C. A.; Alfonso, J.; Campetella, O.; Frasch, A. C. C. Tandem Amino Acid Repeats from Trypanosoma cruzi Shed Antigens Increase the Half-Life of Proteins in Blood. Blood 1999, 93, 2025–2032.
  • (a) Affranchino, J. L.; Ibañez, C. F.; Luquetti, A. O.; Rassi, A.; Reyes, M. B.; Macina, R. A.; Åslund, L.; Pettersson, U.; Frasch, A. C. C. Identification of a Trypanosoma cruzi Antigen That Is Shed during the Acute Phase of Chagas' Disease. Mol. Biochem. Parasitol. 1989, 34, 221–228. DOI: 10.1016/0166-6851(89)90050-9. (b) Buscaglia, C. A.; Campetella, O.; Leguizamón, M. S.; Frasch, A. C. C. The Repetitive Domain of Trypanosoma cruzi Trans-Sialidase Enhances the Immune Response against the Catalytic Domain. J. Infect. Dis. 1998, 177, 431–436. DOI: 10.1086/514199.
  • Alvarez, P.; Buscaglia, C. A.; Campetella, O. Improving Protein Pharmacokinetics by Genetic Fusion to Simple Amino Acid Sequences. J. Biol. Chem. 2004, 279, 3375–3381. DOI: 10.1074/jbc.M311356200.
  • Ul Haq, I.; Nasir Chaudhry, W.; Akhtar, M. N.; Andleeb, S.; Qadri, I. Bacteriophages and Their Implications on Future Biotechnology: A Review. Virol. J. 2012, 9, 9. DOI: 10.1186/1743-422X-9-9.
  • Mahmood, I.; Mahmood, I. Interspecies Pharmacokinetic Scaling: Allometric Principles and Applications; Pine House Publishers: Rockville, MD, 2005.
  • Hutanu, D.; Darie, C. C. Modern Chem. Appl. 2014,2, 1–3. DOI: 10.4172/2329-6798.1000128.
  • Fagnani, R.; Halpern, S.; Hagan, M. Altered Pharmacokinetic and Tumour Localization Properties of Fab' Fragments of a Murine Monoclonal anti-CEA Antibody by Covalent Modification with Low Molecular Weight dextran. Nucl. Med. Commun. 1995, 16, 362–369. DOI: 10.1097/00006231-199505000-00008.
  • Besman, M.; Chipman, S.; Leung, D.; Singer, J. Google Patents, 2012.
  • (a) Park, S. M.; Ahn, K. J.; Jung, H. Y.; Park, J. H.; Kim, J. Effects of Novel Peptides Derived from the Acidic Tail of Synuclein (ATS) on the Aggregation and Stability of Fusion Proteins. Protein Eng. Des. Sel. 2004, 17, 251–260. DOI: 10.1093/protein/gzh029. (b) Leung, D.; Bergman, P.; Lofquist, A.; Pietz, G.; Tompkins, C.; Waggoner, D. Google Patents, 2002.
  • Dennis, M. S.; Zhang, M.; Meng, Y. G.; Kadkhodayan, M.; Kirchhofer, D.; Combs, D.; Damico, L. A. Albumin Binding as a General Strategy for Improving the Pharmacokinetics of Proteins. J. Biol. Chem. 2002, 277, 35035–35043. DOI: 10.1074/jbc.M205854200.
  • Schellenberger, V.; Wang, C.-W.; Geething, N. C.; Spink, B. J.; Campbell, A.; To, W.; Scholle, M. D.; Yin, Y.; Yao, Y.; Bogin, O.; et al. A Recombinant Polypeptide Extends the In Vivo Half-Life of Peptides and Proteins in a Tunable Manner. Nat. Biotechnol. 2009, 27, 1186–1190. DOI: 10.1038/nbt.1588.
  • Schlapschy, M.; Binder, U.; Börger, C.; Theobald, I.; Wachinger, K.; Kisling, S.; Haller, D.; Skerra, A. PASylation: A Biological Alternative to PEGylation for Extending the Plasma Half-Life of Pharmaceutically Active Proteins. Protein Eng. Des. Sel. 2013, 26, 489–501. DOI: 10.1093/protein/gzt023.
  • Breibeck, J.; Skerra, A. The Polypeptide Biophysics of Proline/Alanine-Rich Sequences (PAS): Recombinant Biopolymers with PEG-like Properties. Biopolymers 2018, 109, e23069.
  • Huang, Y.-S.; Wen, X.-F.; Wu, Y.-L.; Wang, Y.-F.; Fan, M.; Yang, Z.-Y.; Liu, W.; Zhou, L.-F. Engineering a Pharmacologically Superior Form of Granulocyte-Colony-Stimulating Factor by Fusion with Gelatin-like-Protein Polymer. Eur. J. Pharm. Biopharm. 2010, 74, 435–441. DOI: 10.1016/j.ejpb.2009.12.002.
  • (a) MacEwan, S. R.; Chilkoti, A. Elastin-like Polypeptides: Biomedical Applications of Tunable Biopolymers. Peptide Sci. Orig. Res. Biomol. 2010, 94, 60–77. DOI: 10.1002/bip.21327. (b) Kim, W. and Chaikof, E. L. Recombinant Elastin-Mimetic Biomaterials: Emerging Applications in Medicine. Adv. Drug. Deliv. Rev. 2010, 62, 1468–1478. DOI: 10.1016/j.addr.2010.04.007.
  • Betre, H.; Liu, W.; Zalutsky, M. R.; Chilkoti, A.; Kraus, V. B.; Setton, L. A. A Thermally Responsive Biopolymer for Intra-Articular Drug Delivery. J. Control Release 2006, 115, 175–182. DOI: 10.1016/j.jconrel.2006.07.022.
  • Schlapschy, M.; Theobald, I.; Mack, H.; Schottelius, M.; Wester, H.-J.; Skerra, A. Fusion of a Recombinant Antibody Fragment with a Homo-Amino-Acid Polymer: Effects on Biophysical Properties and Prolonged Plasma Half-Life. Protein Eng. Des. Select. 2007, 20, 273–284. DOI: 10.1093/protein/gzm020.
  • Sinclair, A. M.; Elliott, S. Glycoengineering: The Effect of Glycosylation on the Properties of Therapeutic Proteins. J. Pharm. Sci. 2005, 94, 1626–1635. DOI: 10.1002/jps.20319.
  • Binder, U.; Skerra, A. Half-Life Extension of Therapeutic Proteins via Genetic Fusion to Recombinant PEG Mimetics. In Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives; Kontermann, R., Ed.; Wiley- Blackwell: Weinheim, 2012; pp 63.
  • Podust, V. N.; Balan, S.; Sim, B.-C.; Coyle, M. P.; Ernst, U.; Peters, R. T.; Schellenberger, V. Extension of in Vivo Half-Life of Biologically Active Molecules by XTEN Protein Polymers. J. Control Release 2016, 240, 52–66. DOI: 10.1016/j.jconrel.2015.10.038.
  • (a) Cleland, J. L.; Geething, N. C.; Moore, J. A.; Rogers, B. C.; Spink, B. J.; Wang, C. ‐W.; Alters, S. E.; Stemmer, W. P.; Schellenberger, V. A Novel Long-Acting Human Growth Hormone Fusion Protein (VRS-317): Enhanced in Vivo Potency and Half-Life. J. Pharm. Sci. 2012, 101, 2744–2754. DOI: 10.1002/jps.23229. (b) Geething, N. C.; To, W.; Spink, B. J.; Scholle, M. D.; Wang, C-w.; Yin, Y.; Yao, Y.; Schellenberger, V.; Cleland, J. L.; Stemmer, W. P. C.; Silverman, J. Gcg-XTEN: An Improved Glucagon Capable of Preventing Hypoglycemia without Increasing Baseline Blood Glucose. PLoS One 2010, 5, e10175. DOI: 10.1371/journal.pone.0010175.
  • Pekker, M.; Shneider, M. N. The surface charge of a cell lipid membrane. J Phys Chem Biophys. 2015, 5, 177-192. DOI: 10.4172/2161-0398.1000177.
  • Russell, T. P.; Deline, V. R.; Dozier, W. D.; Felcher, G. P.; Agrawal, G.; Wool, R. P.; Mays, J. W. Direct Observation of Reptation at Polymer Interfaces. Nature 1993, 365, 235–237.
  • Ahmadpour, S.; Hosseinimehr, S. J. PASylation as a Powerful Technology for Improving the Pharmacokinetic Properties of Biopharmaceuticals. Curr. Drug Deliv. 2018, 15, 331–341. DOI: 10.2174/1567201814666171120122352.
  • Binder, U.; Skerra, A. PASylation®: a Versatile Technology to Extend Drug Delivery. Curr. Opin. Coll. Interf. Sci. 2017, 31, 10–17.
  • Skerra, A.; Theobald, I.; Schlapschy, M. Google Patents, 2013.
  • Brumano, L. P.; da Silva, F. V. S.; Costa-Silva, T. A.; Conceição Apolinário, A.; Santos, J. H. P. M.; Kleingesinds, E. K.; Monteiro, G.; Rangel-Yagui, C. d O.; Benyahia, B.; Junior, A. P. Development of L-Asparaginase Biobetters: Current Research Status and Review of the Desirable Quality Profiles. Front. Bioeng. Biotechnol. 2019, 6, 212.
  • Khodabakhsh, F.; Salimian, M.; Mehdizadeh, A.; Khosravy, M. S.; Vafabakhsh, A.; Karami, E.; Cohan, R. A. New Proline, Alanine, Serine Repeat Sequence for Pharmacokinetic Enhancement of anti-VEGF Single-Domain Antibody. J. Pharmacol. Exp. Ther. 2020, 375, 69–75. DOI: 10.1124/jpet.120.000012.
  • Khodabakhsh, F.; Norouzian, D.; Vaziri, B.; Ahangari Cohan, R.; Sardari, S.; Mahboudi, F.; Behdani, M.; Mansouri, K.; Mehdizadeh, A. Development of a Novel Nano-Sized Anti-VEGFA Nanobody with Enhanced Physicochemical and Pharmacokinetic Properties. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 1402–1414. DOI: 10.1080/21691401.2017.1369426.
  • Zvonova, E. A.; Ershov, A. V.; Ershova, O. A.; Sudomoina, M. A.; Degterev, M. B.; Poroshin, G. N.; Eremeev, A. V.; Karpov, A. P.; Vishnevsky, A. Y.; Goldenkova-Pavlova, I. V. Appl. Microbiol. Biotechnol. 2016, 1–13.
  • Abzalimov, R. R.; Frimpong, A.; Kaltashov, I. A. Structural Characterization of Protein–Polymer Conjugates. I. Assessing Heterogeneity of a Small PEGylated Protein and Mapping Conjugation Sites Using Ion Exchange Chromatography and Top-down Tandem Mass Spectrometry. Int. J. Mass Spectrom. 2012, 312, 135–143.
  • Di Cesare, S.; Binder, U.; Maier, T.; Skerra, A. Bioprocess Int. 2013, 11, 30.
  • Morath, V.; Bolze, F.; Schlapschy, M.; Schneider, S.; Sedlmayer, F.; Seyfarth, K.; Klingenspor, M.; Skerra, A. PASylation of Murine Leptin Leads to Extended Plasma Half-Life and Enhanced In Vivo Efficacy. Mol. Pharm. 2015, 12, 1431–1442. DOI: 10.1021/mp5007147.
  • Mendler, C. T.; Friedrich, L.; Laitinen, I.; Schlapschy, M.; Schwaiger, M.; Wester, H.-J.; Skerra, A. Presented at the MAbs, 2015 (unpublished).
  • Friedrich, L.; Kornberger, P.; Mendler, C. T.; Multhoff, G.; Schwaiger, M.; Skerra, A. Selection of an Anticalin® against the Membrane Form of Hsp70 via Bacterial Surface Display and Its Theranostic Application in Tumour Models. Biol. Chem. 2018, 399, 235–252. DOI: 10.1515/hsz-2017-0207.
  • Kuhn, N.; Schmidt, C. Q.; Schlapschy, M.; Skerra, A. PASylated Coversin, a C5-Specific Complement Inhibitor with Extended Pharmacokinetics, Shows Enhanced anti-Hemolytic Activity In Vitro. Bioconjug. Chem. 2016, 27, 2359–2371. DOI: 10.1021/acs.bioconjchem.6b00369.
  • Harari, D.; Kuhn, N.; Abramovich, R.; Sasson, K.; Zozulya, A. L.; Smith, P.; Schlapschy, M.; Aharoni, R.; Köster, M.; Eilam, R.; et al. Enhanced in Vivo Efficacy of a Type I Interferon Superagonist with Extended Plasma Half-Life in a Mouse Model of Multiple Sclerosis. J. Biol. Chem. 2014, 289, 29014–29029. DOI: 10.1074/jbc.M114.602474.
  • Xia, Y.; Schlapschy, M.; Morath, V.; Roeder, N.; Vogt, E. I.; Stadler, D.; Cheng, X.; Dittmer, U.; Sutter, K.; Heikenwalder, M.; et al. PASylated Interferon α Efficiently Suppresses Hepatitis B Virus and Induces anti-HBs Seroconversion in HBV-Transgenic Mice. Antiviral Res. 2019, 161, 134–143. DOI: 10.1016/j.antiviral.2018.11.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.