111
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effects of zinc on expression of apoptosis-related genes in freezing thawing damage of adipose tissue derived mesenchymal stromal cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Baghaei, K.; Hashemi, S. M.; Tokhanbigli, S.; Rad, A. A.; Assadzadeh-Aghdaei, H.; Sharifian, A.; Zali, M. R. Isolation, Differentiation, and Characterization of Mesenchymal Stem Cells from Human Bone Marrow. Gastroenterol. Hepatol. Bed Bench. 2017, 10, 208–213.
  • Guadix, J. A.; Zugaza, J. L.; Gálvez-Martín, P. Characteristics, Applications and Prospects of Mesenchymal Stem Cells in Cell Therapy. Medicina Clínica 2017, 148, 408–414. DOI: https://doi.org/10.1016/j.medcle.2017.04.018.
  • Viswanathan, S.; Shi, Y.; Galipeau, J.; Krampera, M.; Leblanc, K.; Martin, I.; Nolta, J.; Phinney, D. G.; Sensebe, L. Mesenchymal Stem versus Stromal Cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell Committee Position Statement on Nomenclature. Cytotherapy 2019, 21, 1019–1024. DOI: https://doi.org/10.1016/j.jcyt.2019.08.002.
  • Moll, G.; Ankrum, J. A.; Kamhieh-Milz, J.; Bieback, K.; Ringdén, O.; Volk, H.-D.; Geissler, S.; Reinke, P. Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Guidelines. Trends Mol. Med. 2019, 25, 149–163. DOI: https://doi.org/10.1016/j.molmed.2018.12.006.
  • Bunnell, B. A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-Derived Stem Cells: isolation, Expansion and Differentiation. Methods 2008, 45, 115–120.
  • Gimble, J. M. Adipose Tissue-Derived Therapeutics. Expert Opin. Biol. Ther. 2003, 3, 705–713. DOI: https://doi.org/10.1517/14712598.3.5.705.
  • Minonzio, G.; Corazza, M.; Mariotta, L.; Gola, M.; Zanzi, M.; Gandolfi, E.; De Fazio, D.; Soldati, G. Frozen Adipose-Derived Mesenchymal Stem Cells Maintain High Capability to Grow and Differentiate. Cryobiology 2014, 69, 211–216. DOI: https://doi.org/10.1016/j.cryobiol.2014.07.005.
  • Shaik, S.; Hayes, D.; Gimble, J.; Devireddy, R. Inducing Heat Shock Proteins Enhances the Stemness of Frozen–Thawed Adipose Tissue-Derived Stem Cells. Stem Cells Dev. 2017, 26, 608–616.
  • Moll, G.; Alm, J. J.; Davies, L. C.; von Bahr, L.; Heldring, N.; Stenbeck-Funke, L.; Hamad, O. A.; Hinsch, R.; Ignatowicz, L.; Locke, M. Do Cryopreserved Mesenchymal Stromal Cells Display Impaired Immunomodulatory and Therapeutic Properties? Stem Cells 2014, 32, 2430–2442. DOI: https://doi.org/10.1002/stem.1729.
  • Moll, G.; Geißler, S.; Catar, R.; Ignatowicz, L.; Hoogduijn, M. J.; Strunk, D.; Ringdén, O. Cryopreserved or Fresh Mesenchymal Stromal Cells: only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy? Adv. Exp. Med. Biol. 2016, 951, 77–98.
  • Moll, G.; Hoogduijn, M.; Ankrum, J. Editorial: Safety, Efficacy and Mechanisms of Action of Mesenchymal Stem Cell Therapies. Front. Immunol. 2020, 11, 243.
  • Amidi, F.; Rashidi, Z.; Khosravizadeh, Z.; Khodamoradi, K.; Talebi, A.; Navid, S.; Abbasi, M. Antioxidant Effects of Quercetin in Freeze-Thawing Process of Mouse Spermatogonial Stem Cells. Asia. Pac. J. Reprod. 2019, 8, 7.
  • Matsuda, S.; Nakagawa, Y.; Kitagishi, Y.; Nakanishi, A.; Murai, T. Reactive Oxygen Species, Superoxide Dimutases, and PTEN-p53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem/Stromal Cells Regulation. Cells 2018, 7, 36. DOI: https://doi.org/10.3390/cells7050036.
  • Nasri, H. Antioxidant Therapy for Hemodialysis Patients. Ann. Res. Antioxid. 2016, 1, e01.
  • Aliakbari, F.; Sedighi Gilani, M. A.; Yazdekhasti, H.; Koruji, M.; Asgari, H. R.; Baazm, M.; Izadyar, F.; Kharrazi Nejad, E.; Khanezad, M.; Abbasi, M. Effects of Antioxidants, Catalase and α-Tocopherol on Cell Viability and Oxidative Stress Variables in Frozen-Thawed Mice Spermatogonial Stem Cells. Artif. Cells. Nanomed. Biotechnol. 2017, 45, 63–68. DOI: https://doi.org/10.3109/21691401.2016.1138491.
  • Dinara, S.; Sengoku, K.; Tamate, K.; Horikawa, M.; Ishikawa, M. Effects of Supplementation with Free Radical Scavengers on the Survival and Fertilization Rates of Mouse Cryopreserved Oocytes. Hum. Reprod. 2001, 16, 1976–1981. DOI: https://doi.org/10.1093/humrep/16.9.1976.
  • Burch, R. E.; Hahn, H. K.; Sullivan, J. F. Newer Aspects of the Roles of Zinc, Manganese, and Copper in Human Nutrition. Clin. Chem. 1975, 21, 501–520.
  • Tapiero, H.; Tew, K. D. Trace Elements in Human Physiology and Pathology: Zinc and Metallothioneins. Biomed. Pharmacother. 2003, 57, 399–411. DOI: https://doi.org/10.1016/s0753-3322(03)00081-7.
  • Dorostkar, K.; Shoushtari, S. M. A.; Khaki, A. Effects of in Vitro Zinc Sulphate Additive to the Semen Extender on Water Buffalo (Bubalusbubalis) Spermatozoa before and after Freezing. Int. J. Fertil. Steril. 2014, 8, 325–332.
  • Isaac, A. V.; Kumari, S.; Nair, R.; Urs, D. R.; Salian, S. R.; Kalthur, G.; Adiga, S. K.; Manikkath, J.; Mutalik, S.; Sachdev, D. Supplementing Zinc Oxide Nanoparticles to Cryopreservation Medium Minimizes the Freeze-Thaw-Induced Damage to Spermatozoa. Biochem. Biophys. Res. Commun. 2017, 494, 656–662. DOI: https://doi.org/10.1016/j.bbrc.2017.10.112.
  • Kotdawala, A. P.; Kumar, S.; Salian, S. R.; Thankachan, P.; Govindraj, K.; Kumar, P.; Kalthur, G.; Adiga, S. K. Addition of Zinc to Human Ejaculate Prior to Cryopreservation Prevents Freeze-Thaw-Induced DNA Damage and Preserves Sperm Function. J. Assist. Reprod. Genet. 2012, 29, 1447–1453. DOI: https://doi.org/10.1007/s10815-012-9894-8.
  • Zhang, D.; Li, Y.; Zhu, T.; Zhang, F.; Yang, Z.; Miao, D. Zinc Supplementation Results in Improved Therapeutic Potential of Bone Marrow-Derived Mesenchymal Stromal Cells in a Mouse Ischemic Limb Model. Cytotherapy 2011, 13, 156–164. DOI: https://doi.org/10.3109/14653249.2010.512633.
  • Gregory, C. A.; Gunn, W. G.; Peister, A.; Prockop, D. J. An Alizarin Red-Based Assay of Mineralization by Adherent Cells in Culture: comparison with Cetylpyridinium Chloride Extraction. Anal. Biochem. 2004, 329, 77–84.
  • Aguena, M.; Dalto Fanganiello, R.; Tissiani, L. A. L.; Ishiy, F. A. A.; Atique, R.; Alonso, N.; Passos-Bueno, M. R. Optimization of Parameters for a More Efficient Use of Adipose-Derived Stem Cells in Regenerative Medicine Therapies. Stem Cells Int. 2012, 2012, 303610. DOI: https://doi.org/10.1155/2012/303610.
  • Zhang, Q.; Ge, K.; Ren, H.; Zhang, C.; Zhang, J. Effects of Cerium Oxide Nanoparticles on the Proliferation, Osteogenic Differentiation and Adipogenic Differentiation of Primary Mouse Bone Marrow Stromal Cells in Vitro. J. Nanosci. Nanotechnol. 2015, 15, 6444–6451.
  • Gao, S.; Takami, A.; Takeshita, K.; Niwa, R.; Kato, H.; Nakayama, T. Practical and Safe Method of Cryopreservation for Clinical Application of Human Adipose-Derived Mesenchymal Stem Cells without a Programmable Freezer or Serum. BioRxiv 2019, 664524. https://www.biorxiv.org/content/10.1101/664524v1.full
  • Pourhassanali, N.; Roshan-Milani, S.; Kheradmand, F.; Motazakker, M.; Bagheri, M.; Saboory, E. Zinc Attenuates Ethanol-Induced Sertoli Cell Toxicity and Apoptosis through Caspase-3 Mediated Pathways. Reprod. Toxicol. 2016, 61, 97–103.
  • Silva, L. R.; Girard, D. Human Eosinophils Are Direct Targets to Nanoparticles: zinc Oxide Nanoparticles (ZnO) Delay Apoptosis and Increase the Production of the Pro-Inflammatory Cytokines IL-1β and IL-8. Toxicol. Lett. 2016, 259, 11–20. DOI: https://doi.org/10.1016/j.toxlet.2016.07.020.
  • Wätjen, W.; Haase, H.; Biagioli, M.; Beyersmann, D. Induction of Apoptosis in Mammalian Cells by Cadmium and Zinc. Environ. Health Perspect. 2002, 110, 865–867.
  • Zhang, X.; Wang, Z.; Mao, L.; Dong, X.; Peng, Q.; Chen, J.; Tan, C.; Hu, R. Effect of ZnO Nanoparticle on Cell Viability, Zinc Uptake Efficiency, and Zinc Transporters Gene Expression: A Comparison with ZnO and ZnSO4. Czech J. Anim. Sci. 2017, 62, 32–41. DOI: https://doi.org/10.17221/15/2016-CJAS.
  • Xu, X.; Cowley, S.; Flaim, C. J.; James, W.; Seymour, L.; Cui, Z. The Roles of Apoptotic Pathways in the Low Recovery Rate after Cryopreservation of Dissociated Human Embryonic Stem Cells. Biotechnol. Prog. 2010, 26, 827–837.
  • Zhu, W.; Chen, J.; Cong, X.; Hu, S.; Chen, X. Hypoxia and Serum Deprivation‐Induced Apoptosis in Mesenchymal Stem Cells. Stem Cells 2006, 24, 416–425.
  • Emily, H.-Y. C.; Wei, M. C.; Weiler, S.; Flavell, R. A.; Mak, T. W.; Lindsten, T.; Korsmeyer, S. J. BCL-2, BCL-XL Sequester BH3 Domain-Only Molecules Preventing BAX-and BAK-Mediated Mitochondrial Apoptosis. Mol. Cell 2001, 8, 705–711.
  • Ghaznavi, H.; Najafi, R.; Mehrzadi, S.; Hosseini, A.; Tekyemaroof, N.; Shakeri-Zadeh, A.; Rezayat, M.; Sharifi, A. M. Neuro-Protective Effects of Cerium and Yttrium Oxide Nanoparticles on High Glucose-Induced Oxidative Stress and Apoptosis in Undifferentiated PC12 Cells. Neurol. Res. 2015, 37, 624–632. DOI: https://doi.org/10.1179/1743132815Y.0000000037.
  • Ganju, N.; Eastman, A. Zinc Inhibits Bax and Bak Activation and Cytochrome c Release Induced by Chemical Inducers of Apoptosis but Not by Death-Receptor-Initiated Pathways. Cell Death Differ. 2003, 10, 652–661. DOI: https://doi.org/10.1038/sj.cdd.4401234.
  • Schrantz, N.; Auffredou, M.; Bourgeade, M.; Besnault, L.; Leca, G.; Vazquez, A. Zinc-Mediated Regulation of Caspases Activity: Dose-Dependent Inhibition or Activation of Caspase-3 in the Human Burkitt Lymphoma B Cells (Ramos). Cell Death Differ. 2001, 8, 152–161. DOI: https://doi.org/10.1038/sj.cdd.4400772.
  • Truong-Tran, A. Q.; Carter, J.; Ruffin, R. E.; Zalewski, P. D. The Role of Zinc in Caspase Activation and Apoptotic Cell Death Zinc Biochemistry, Physiology, and Homeostasis; Springer: Cham, 2001; pp. 129–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.