311
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Characterization and application of a crude bacterial protease to produce antioxidant hydrolysates from whey protein

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Thapa, S.; Li, H.; OHair, J.; Bhatti, S.; Chen, F. C.; Nasr, K. A.; Johnson, T.; Zhou, S. Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Mol. Biotechnol. 2019, 61, 579–601. DOI: 10.1007/s12033-019-00187-1.
  • Danilova, I.; Sharipova, M. The Practical Potential of Bacilli and Their Enzymes for Industrial Production. Front. Microbiol. 2020, 11, 1782. DOI: 10.3389/fmicb.2020.01782.
  • Gurumallesh, P.; Alagu, K.; Ramakrishnan, B.; Muthusamy, S. A Systematic Reconsideration on Proteases. Int. J. Biol. Macromol. 2019, 128, 254–267. DOI: 10.1016/j.ijbiomac.2019.01.081.
  • Solanki, P.; Putatunda, C.; Kumar, A.; Bhatia, R.; Walia, A. Microbial Proteases: Ubiquitous Enzymes with Innumerable Uses. 3 Biotech. 2021, 11, 428. DOI: 10.1007/s13205-021-02928-z.
  • Aguilar, J. G.; dos, S.; Sato, H. H. Microbial Proteases: Production and Application in Obtaining Protein Hydrolysates. Food Res. Int. 2018, 103, 253–262. DOI: 10.1016/j.foodres.2017.10.044.
  • Tavano, O. L.; Berenguer-Murcia, A.; Secundo, F.; Fernandez-Lafuente, R. Biotechnological Applications of Proteases in Food Technology. Compr. Rev. Food Sci. Food Saf. 2018, 17, 412–436. DOI: 10.1111/1541-4337.12326.
  • Daroit, D. J.; Brandelli, A. In Vivo Bioactivities of Food Protein-Derived Peptides – a Current Review. Curr. Opin. Food Sci. 2021, 39, 120–129. DOI: 10.1016/j.cofs.2021.01.002.
  • Osukoya, O.; Nwoye-Ossy, M.; Olayide, I.; Ojo, O.; Adewale, O.; Kuku, A. Antioxidant Activities of Peptide Hydrolysates Obtained from the Seeds of Treculia Africana Decne (African Breadfruit). Prep. Biochem. Biotechnol. 2020, 50, 504–510. DOI: 10.1080/10826068.2019.1709980.
  • Sebastián-Nicolás, J. L.; González-Olivares, L. G.; Vázquez-Rodríguez, G. A.; Lucho-Constatino, C. A.; Castañeda-Ovando, A.; Cruz-Guerrero, A. E. Valorization of Whey Using a Biorefinery. Biofuels Bioprod. Biorefining 2020, 14, 1010–1027. DOI: 10.1002/bbb.2100.
  • Ganju, S.; Gogate, P. R. A Review on Approaches for Efficient Recovery of Whey Proteins from Dairy Industry Effluents. J. Food Eng. 2017, 215, 84–96. DOI: 10.1016/j.jfoodeng.2017.07.021.
  • Mehra, R.; Kumar, H.; Kumar, N.; Ranvir, S.; Jana, A.; Buttar, H. S.; Telessy, I. G.; Awuchi, C. G.; Okpala, C. O. R.; Korzeniowska, M.; et al. Whey Proteins Processing and Emergent Derivatives: An Insight Perspective from Constituents, Bioactivities, Functionalities to Therapeutic Applications. J. Funct. Foods 2021, 87, 104760. DOI: 10.1016/j.jff.2021.104760.
  • Kareb, O.; Aïder, M. Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: A Critical Review. Probiotics Antimicrob. Proteins 2019, 11, 348–369. DOI: 10.1007/s12602-018-9427-6.
  • Minj, S.; Anand, S. Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy 2020, 1, 233–258. DOI: 10.3390/dairy1030016.
  • Zhao, C.; Ashaolu, T. J. Bioactivity and Safety of Whey Peptides. LWT - Food Sci. Technol. 2020, 134, 109935. DOI: 10.1016/j.lwt.2020.109935.
  • Mazorra-Manzano, M. A.; Mora-Cortes, W. G.; Leandro-Roldan, M. M.; González-Velázquez, D. A.; Torres-Llanez, M. J.; Ramírez-Suarez, J. C.; González-Córdova, A. F.; Vallejo-Córdoba, B. Production of Whey Protein Hydrolysates with Angiotensin-Converting Enzyme-Inhibitory Activity Using Three New Sources of Plant Proteases. Biocatal. Agric. Biotechnol. 2020, 28, 101724. DOI: 10.1016/j.bcab.2020.101724.
  • Chang, C.; Gong, S.; Liu, Z.; Yan, Q.; Jiang, Z. High Level Expression and Biochemical Characterization of an Alkaline Serine Protease from Geobacillus Stearothermophilus to Prepare Antihypertensive Whey Protein Hydrolysate. BMC Biotechnol. 2021, 21, 21. DOI: 10.1186/s12896-021-00678-7.
  • Rocha, G. F.; Kise, F.; Rosso, A. M.; Parisi, M. G. Potential Antioxidant Peptides Produced from Whey Hydrolysis with an Immobilized Aspartic Protease from Salpichroa Origanifolia Fruits. Food Chem. 2017, 237, 350–355. DOI: 10.1016/j.foodchem.2017.05.112.
  • Bertucci, J. I.; Liggieri, C. S.; Colombo, M. L.; Vairo Cavalli, S. E.; Bruno, M. A. Application of Peptidases from Maclura Pomifera Fruit for the Production of Active Biopeptides from Whey Protein. LWT - Food Sci. Technol. 2015, 64, 157–163. DOI: 10.1016/j.lwt.2015.05.041.
  • De Castro, R. J. S.; Sato, H. H. Advantages of an Acid Protease from Aspergillus Oryzae over Commercial Preparations for Production of Whey Protein Hydrolysates with Antioxidant Activities. Biocatal. Agric. Biotechnol. 2014, 3, 58–65. DOI: 10.1016/j.bcab.2013.11.012.
  • Hamin Neto, Y. A. A.; Rosa, J. C.; Cabral, H. Peptides with Antioxidant Properties Identified from Casein, Whey, and Egg Albumin Hydrolysates Generated by Two Novel Fungal Proteases. Prep. Biochem. Biotechnol. 2019, 49, 639–648. DOI: 10.1080/10826068.2019.1566147.
  • Corrêa, A. P. F.; Daroit, D. J.; Fontoura, R.; Meira, S. M. M.; Segalin, J.; Brandelli, A. Hydrolysates of Sheep Cheese Whey as a Source of Bioactive Peptides with Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activities. Peptides 2014, 61, 48–55. DOI: 10.1016/j.peptides.2014.09.001.
  • De Oliveira, C. T.; Pereira, J. Q.; Brandelli, A.; Daroit, D. J. Prospecting Soil Bacteria from Subtropical Brazil for Hydrolases Production. Biology 2017, 72, 130–139. DOI: 10.1515/biolog-2017-0025.
  • De Oliveira, C. T.; Rieger, T. J.; Daroit, D. J. Catalytic Properties and Thermal Stability of a Crude Protease from the Keratinolytic Bacillus Sp. CL33A. Biocatal. Agric. Biotechnol. 2017, 10, 270–277. DOI: 10.1016/j.bcab.2017.04.004.
  • Daroit, D. J.; Sant'anna, V.; Brandelli, A. Kinetic Stability Modelling of Keratinolytic Protease P45: Influence of Temperature and Metal Ions. Appl. Biochem. Biotechnol. 2011, 165, 1740–1753. DOI: 10.1007/s12010-011-9391-z.
  • Lermen, A. M.; Clerici, N. J.; Daroit, D. J. Biochemical Properties of a Partially Purified Protease from Bacillus Sp. CL18 and Its Use to Obtain Bioactive Soy Protein Hydrolysates. Appl. Biochem. Biotechnol. 2020, 192, 643–664. DOI: 10.1007/s12010-020-03355-1.
  • Peričin, D.; Radulović-Popović, L.; Vaštag, Ž.; Mađarev-Popović, S.; Trivić, S. Enzymatic Hydrolysis of Protein Isolate from Hull-Less Pumpkin Oil Cake: Application of Response Surface Methodology. Food Chem. 2009, 115, 753–757. DOI: 10.1016/j.foodchem.2008.12.040.
  • Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. DOI: 10.1016/S0021-9258(19)52451-6.
  • Castro, R. J. S. D.; Sato, H. H. Comparison and Synergistic Effects of Intact Proteins and Their Hydrolysates on the Functional Properties and Antioxidant Activities in a Simultaneous Process of Enzymatic Hydrolysis. Food Bioprod. Proc. 2014, 92, 80–88. DOI: 10.1016/j.fbp.2013.07.004.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3.
  • Chang, C. Y.; Wu, K. C.; Chiang, S. H. Antioxidant Properties and Protein Compositions of Porcine Haemoglobin Hydrolysates. Food Chem. 2007, 100, 1537–1543. DOI: 10.1016/j.foodchem.2005.12.019.
  • Callegaro, K.; Welter, N.; Daroit, D. J. Feathers as Bioresource: Microbial Conversion into Bioactive Protein Hydrolysates. Proc. Biochem. 2018, 75, 1–9. DOI: 10.1016/j.procbio.2018.09.002.
  • Manni, L.; Misbah, A.; Zouine, N.; Ananou, S. Biochemical Characterization of a Novel Alkaline and Detergent Stable Protease from Aeromonas Veronii OB3. Microbiol. Biotechnol. Lett. 2020, 48, 352–359. DOI: 10.4014/mbl.1912.12015.
  • Hassan, M. A.; Haroun, B. M.; Amara, A. A.; Serour, E. A. Production and Characterization of Keratinolytic Protease from New Wool-Degrading Bacillus Species Isolated from Egyptian Ecosystem. Biomed. Res. Int. 2013, 2013, 175012. DOI: 10.1155/2013/175012.
  • Nnolim, N. E.; Ntozonke, N.; Okoh, A. I.; Nwodo, U. U. Exoproduction and Characterization of a Detergent-Stable Alkaline Keratinase from Arthrobacter Sp. KFS-1. Biochimie 2020, 177, 53–62. DOI: 10.1016/j.biochi.2020.08.005.
  • Cavello, I.; Bezus, B.; Cavalitto, S. The Keratinolytic Bacteria Bacillus Cytotoxicus as a Source of Novel Proteases and Feather Protein Hydrolysates with Antioxidant Activities. J. Genet. Eng. Biotechnol. 2021, 19, 107. DOI: 10.1186/s43141-021-00207-1.
  • Sinha, R.; Khare, S. K. Immobilization of Halophilic Bacillus Sp. EMB9 Protease on Functionalized Silica Nanoparticles and Application in Whey Protein Hydrolysis. Bioproc. Biosyst. Eng. 2015, 38, 739–748. DOI: 10.1007/s00449-014-1314-2.
  • Jagadeesan, Y.; Meenakshisundaram, S.; Saravanan, V.; Balaiah, A. Sustainable Production, Biochemical and Molecular Characterization of Thermo-and-Solvent Stable Alkaline Serine Keratinase from Novel Bacillus Pumilus AR57 for Promising Poultry Solid Waste Management. Int. J. Biol. Macromol. 2020, 163, 135–146. DOI: 10.1016/j.ijbiomac.2020.06.219.
  • Rieger, T. J.; De Oliveira, C. T.; Pereira, J. Q.; Brandelli, A.; Daroit, D. J. Proteolytic System of Bacillus Sp. CL18 is Capable of Extensive Feather Degradation and Hydrolysis of Diverse Protein Substrates. Br. Poult. Sci. 2017, 58, 329–335. DOI: 10.1080/00071668.2017.1293229.
  • Daoud, L.; Jlidi, M.; Hmani, H.; Hadj Brahim, A.; El Arbi, M.; Ben Ali, M. Characterization of Thermo-Solvent Stable Protease from Halobacillus Sp. CJ4 Isolated from Chott Eldjerid Hypersaline Lake in Tunisia. J. Basic Microbiol. 2017, 57, 104–113. DOI: 10.1002/jobm.201600391.
  • Hammami, A.; Fakhfakh, N.; Abdelhedi, O.; Nasri, M.; Bayoudh, A. Proteolytic and Amylolytic Enzymes from a Newly Isolated Bacillus Mojavensis SA: Characterization and Applications as Laundry Detergent Additive and in Leather Processing. Int. J. Biol. Macromol. 2018, 108, 56–68. DOI: 10.1016/j.ijbiomac.2017.11.148.
  • Lam, M. Q.; Nik Mut, N. N.; Thevarajoo, S.; Chen, S. J.; Selvaratnam, C.; Hussin, H.; Jamaluddin, H.; Chong, C. S. Characterization of Detergent Compatible Protease from Halophilic Virgibacillus Sp. CD6. 3 Biotech. 2018, 8, 104. DOI: 10.1007/s13205-018-1133-2.
  • Mortuza, M. F.; Rahman, M. H.; Rahman, M. H.; Nahar, A.; Islam Khan, M. R.; Hasan, A. K. M. M.; Rahman, M. Isolation, Biochemical and Genetic Characterization of Extracellular Protease Producing Cattle Hide Dehairing Bacterium – a Potential Alternative to Chemical Dehairing. Ecol. Genet. Genom. 2017, 2, 3–12. DOI: 10.1016/j.egg.2016.11.002.
  • Hammami, A.; Hamdi, M.; Abdelhedi, O.; Jridi, M.; Nasri, M.; Bayoudh, A. Surfactant- and Oxidant-Stable Alkaline Proteases from Bacillus Invictae: Characterization and Potential Applications in Chitin Extraction and as a Detergent Additive. Int. J. Biol. Macromol. 2017, 96, 272–281. DOI: 10.1016/j.ijbiomac.2016.12.035.
  • Mhamdi, S.; Ktari, N.; Hajji, S.; Nasri, M.; Sellami Kamoun, A. Alkaline Proteases from a Newly Isolated Micromonospora Chaiyaphumensis S103: Characterization and Application as a Detergent Additive and for Chitin Extraction from Shrimp Shell Waste. Int. J. Biol. Macromol. 2017, 94, 415–422. DOI: 10.1016/j.ijbiomac.2016.10.036.
  • Silveira, S. T.; Casarin, F.; Gemelli, S.; Brandelli, A. Thermodynamics and Kinetics of Heat Inactivation of a Novel Keratinase from Chryseobacterium Sp. Strain Kr6. Appl. Biochem. Biotechnol. 2010, 162, 548–560. DOI: 10.1007/s12010-009-8835-1.
  • Cavello, I. A.; Cavalitto, S. F.; Hours, R. A. Biodegradation of a Keratin Waste and the Concomitant Production of Detergent Stable Serine Proteases from Paecilomyces Lilacinus. Appl. Biochem. Biotechnol. 2012, 167, 945–958. DOI: 10.1007/s12010-012-9650-7.
  • Nilegaonkar, S. S.; Zambare, V. P.; Kanekar, P. P.; Dhakephalkar, P. K.; Sarnaik, S. S. Production and Partial Characterization of Dehairing Protease from Bacillus Cereus MCM B-326. Bioresour. Technol. 2007, 98, 1238–1245. DOI: 10.1016/j.biortech.2006.05.003.
  • Rathod, M. G.; Pathak, A. P. Optimized Production, Characterization and Application of Alkaline Proteases from Taxonomically Assessed Microbial Isolates from Lonar Soda Lake, India. Biocatal. Agric. Biotechnol. 2016, 7, 164–173. DOI: 10.1016/j.bcab.2016.06.002.
  • Verma, A.; Singh, H.; S. Anwar, M.; Kumar, S.; Ansari, M. W.; Agrawal, S. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces Sp. RM4: IAA Production and Plant Growth Promotion. Front. Microbiol. 2016, 7, 1189. DOI: 10.3389/fmicb.2016.01189.
  • Nwachukwu, I. D.; Aluko, R. E. Structural and Functional Properties of Food Protein-Derived Antioxidant Peptides. J. Food Biochem. 2019, 43, e12761. DOI: 10.1111/jfbc.12761.
  • Singh, P.; Singh, T. p.; Gandhi, N. Prevention of Lipid Oxidation in Muscle Foods by Milk Proteins and Peptides: A Review. Food Rev. Int. 2018, 34, 226–247. DOI: 10.1080/87559129.2016.1261297.
  • Zapata Bustamante, S.; Sepúlveda Valencia, J. U.; Correa Londoño, G. A.; Durango Restrepo, D. L.; Gil González, J. H. Hydrolysates from Ultrafiltrated Double-Cream Cheese Whey: Enzymatic Hydrolysis, Antioxidant, and ACE-Inhibitory Activities and Peptide Characterization. J. Food Proc. Preserv. 2021, 45, 1–13. DOI: 10.1111/jfpp.15790.
  • Oh, N. S.; Lee, H. A.; Lee, J. Y.; Joung, J. Y.; Lee, K. B.; Kim, Y.; Lee, K. W.; Kim, S. H. The Dual Effects of Maillard Reaction and Enzymatic Hydrolysis on the Antioxidant Activity of Milk Proteins. J. Dairy Sci. 2013, 96, 4899–4911. DOI: 10.3168/jds.2013-6613.
  • Ballatore, M. B.; Bettiol, M. d R.; Vanden Braber, N. L.; Aminahuel, C. A.; Rossi, Y. E.; Petroselli, G.; Erra-Balsells, R.; Cavaglieri, L. R.; Montenegro, M. A. Antioxidant and Cytoprotective Effect of Peptides Produced by Hydrolysis of Whey Protein Concentrate with Trypsin. Food Chem. 2020, 319, 126472. DOI: 10.1016/j.foodchem.2020.126472.
  • Cimino, C. V.; Colombo, M. L.; Liggieri, C.; Bruno, M.; Vairo-Cavalli, S. Partial Molecular Characterization of Arctium minus Aspartylendopeptidase and Preparation of Bioactive Peptides by Whey Protein Hydrolysis. J. Med. Food. 2015, 18, 856–864. DOI: 10.1089/jmf.2014.0101.
  • Xochitl, T.-J.; Téllez-Jurado, A.; Gómez-Aldapa, C. A.; Mercado-Flores, Y.; Arana-Cuenca, A. Antioxidant and Antihypertensive Activity of Bovine Whey Protein Concentrate Enzymatic Hydrolysates. Biotecnia 2021, 23, 161–169. DOI: 10.18633/biotecnia.v23i1.1321.
  • Jin, H.; Liu, C.; Zhang, S.; Guo, Z.; Li, J.; Zhao, Q.; Zhang, Y.; Xu, J. Comparison of Protein Hydrolysates against Their Native Counterparts in Terms of Structural and Antioxidant Properties, and When Used as Emulsifiers for Curcumin Nanoemulsions. Food Funct. 2020, 11, 10205–10218. DOI: 10.1039/d0fo01830a.
  • Peng, X.; Kong, B.; Xia, X.; Liu, Q. Reducing and Radical-Scavenging Activities of Whey Protein Hydrolysates Prepared with Alcalase. Int. Dairy J. 2010, 20, 360–365. DOI: 10.1016/j.idairyj.2009.11.019.
  • Hussein, F. A.; Chay, S. Y.; Zarei, M.; Auwal, S. M.; Hamid, A. A.; Wan Ibadullah, W. Z.; Saari, N. Whey Protein Concentrate as a Novel Source of Bifunctional Peptides with Angiotensin-i Converting Enzyme Inhibitory and Antioxidant Properties: RSM Study. Foods 2020, 9, 64. DOI: 10.3390/foods9010064.
  • Zhang, X.; Li, X.; Liu, L.; Wang, L.; Massounga Bora, A. F.; Du, L. Covalent Conjugation of Whey Protein Isolate Hydrolysates and Galactose through Maillard Reaction to Improve the Functional Properties and Antioxidant Activity. Int. Dairy J. 2020, 102, 104584. DOI: 10.1016/j.idairyj.2019.104584.
  • Alizadeh, O.; Aliakbarlu, J. Effects of Ultrasound and Ohmic Heating Pretreatments on Hydrolysis, Antioxidant and Antibacterial Activities of Whey Protein Concentrate and Its Fractions. LWT - Food Sci. Technol. 2020, 131, 109913. DOI: 10.1016/j.lwt.2020.109913.
  • Samaranayaka, A. G. P.; Li-Chan, E. C. Y. Food-Derived Peptidic Antioxidants: A Review of Their Production, Assessment, and Potential Applications. J. Funct. Foods 2011, 3, 229–254. DOI: 10.1016/j.jff.2011.05.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.