432
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Application of a 3D printed miniaturized hydrocyclone in biopharmaceutical industry-numerical and experimental studies of yeast separation from fermentation culture media

, , ORCID Icon, &

References

  • Wei, X.; Chen, K.; Guo, S.; Liu, W.; Zhao, X.-Z. Emerging Microfluidic Technologies for the Detection of Circulating Tumor Cells and Fetal Nucleated Red Blood Cells. ACS Appl. Bio. Mater. 2021, 4, 1140–1155. DOI: 10.1021/acsabm.0c01325.
  • Fallahi, H.; Yadav, S.; Phan, H.-P.; Ta, H.; Zhang, J.; Nguyen, N.-T. Size-Tuneable Isolation of Cancer Cells Using Stretchable Inertial Microfluidics. Lab Chip. 2021, 21, 2008–2018. DOI: 10.1039/d1lc00082a.
  • Basiri, A.; Heidari, A.; Nadi, M. F.; Fallahy, M. T. P.; Nezamabadi, S. S.; Sedighi, M.; Saghazadeh, A.; Rezaei, N. Microfluidic Devices for Detection of RNA Viruses. Rev. Med. Virol. 2021, 31, 1–11. DOI: 10.1002/rmv.2154.
  • Wang, Y.; Nunna, B. B.; Talukder, N.; Etienne, E. E.; Lee, E. S. Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms. Bioengineering 2021, 8, 94. DOI: 10.3390/bioengineering8070094.
  • Asghari, A.; Wang, C.; Yoo, K. M.; Rostamian, A.; Xu, X.; Shin, J.-D.; Dalir, H.; Chen, R. T. Fast, Accurate, Point-of-Care COVID-19 Pandemic Diagnosis Enabled through Advanced Lab-on-Chip Optical Biosensors: Opportunities and Challenges. Appl. Phys. Rev. 2021, 8, 031313. DOI: 10.1063/5.0022211.
  • Sajeesh, P.; Sen, A. K. Particle Separation and Sorting in Microfluidic Devices: A Review. Microfluid. Nanofluid. 2014, 17, 1–52. DOI: 10.1007/s10404-013-1291-9.
  • Klein, K.; Piana, T.; Lauschke, T.; Schweyen, P.; Dierkes, G.; Ternes, T.; Schulte-Oehlmann, U.; Oehlmann, J. Chemicals Associated with Biodegradable Microplastic Drive the Toxicity to the Freshwater Oligochaete Lumbriculus variegatus. Aquat. Toxicol. 2021, 231, 105723. DOI: 10.1016/j.aquatox.2020.105723.
  • Liu, S.; Zhang, J.; Hou, L-t.; Xu, J-y. Investigation on the Variation Regularity of the Characteristic Droplet Diameters in the Swirling Flow Field. Chem. Eng. Sci. 2021, 229, 116153. DOI: 10.1016/j.ces.2020.116153.
  • Kammer, F. v d.; Legros, S.; Hofmann, T.; Larsen, E. H.; Loeschner, K. Separation and Characterization of Nanoparticles in Complex Food and Environmental Samples by Field-Flow Fractionation. Trac, Trends Anal. Chem. 2011, 30, 425–436. DOI: 10.1016/j.trac.2010.11.012.
  • Djerf, T.; Pallarès, D.; Johnsson, F. Solids Flow Patterns in Large-Scale Circulating Fluidised Bed Boilers: Experimental Evaluation under Fluid-Dynamically down-Scaled Conditions. Chem. Eng. Sci. 2021, 231, 116309. DOI: 10.1016/j.ces.2020.116309.
  • Lin, M.; Qi, X.-R. Purification Method of Drug-Loaded Liposome. In Liposome-Based Drug Delivery Systems; Lu, W. L.; Qi, X. R., Eds.; Springer, Berlin, Heidelberg, 2021; pp. 111–121.
  • Takagi, J.; Yamada, M.; Yasuda, M.; Seki, M. Continuous Particle Separation in a Microchannel Having Asymmetrically Arranged Multiple Branches. Lab Chip. 2005, 5, 778–784. DOI: 10.1039/b501885d.
  • Yamada, M.; Nakashima, M.; Seki, M. Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel. Anal. Chem. 2004, 76, 5465–5471. DOI: 10.1021/ac049863r.
  • Oakey, J.; Allely, J.; Marr, D. W. Laminar-Flow-Based Separations at the Microscale. Biotechnol. Prog. 2002, 18, 1439–1442. DOI: 10.1021/bp0256216.
  • Huang, L. R.; Cox, E. C.; Austin, R. H.; Sturm, J. C. Continuous Particle Separation through Deterministic Lateral Displacement. Science 2004, 304, 987–990. DOI: 10.1126/science.1094567.
  • Huang, R.; Barber, T. A.; Schmidt, M. A.; Tompkins, R. G.; Toner, M.; Bianchi, D. W.; Kapur, R.; Flejter, W. L. A Microfluidics Approach for the Isolation of Nucleated Red Blood Cells (NRBCs) from the Peripheral Blood of Pregnant Women. Prenat. Diagn. 2008, 28, 892–899. DOI: 10.1002/pd.2079.
  • Li, N.; Kamei, D. T.; Ho, C.-M. On-Chip Continuous Blood Cell Subtype Separation by Deterministic Lateral Displacement. In 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE: Piscataway, 2007. DOI: 10.1109/NEMS.2007.352171.
  • Yang, S.; Ündar, A.; Zahn, J. D. A Microfluidic Device for Continuous, Real Time Blood Plasma Separation. Lab Chip 2006, 6, 871–880. DOI: 10.1039/b516401j.
  • Park, J.-S.; Jung, H.-I. Multiorifice Flow Fractionation: Continuous Size-Based Separation of Microspheres Using a Series of Contraction/Expansion Microchannels. Anal. Chem. 2009, 81, 8280–8288. DOI: 10.1021/ac9005765.
  • Di Carlo, D. Inertial Microfluidics. Lab Chip 2009, 9, 3038–3046. DOI: 10.1039/b912547g.
  • Wu, L.; Guan, G.; Hou, H. W.; Bhagat, A. A. S.; Han, J. Separation of Leukocytes from Blood Using Spiral Channel with Trapezoid Cross-Section. Anal. Chem. 2012, 84, 9324–9331. DOI: 10.1021/ac302085y.
  • Martel, J. M.; Toner, M. Inertial Focusing in Microfluidics. Annu. Rev. Biomed. Eng. 2014, 16, 371–396. DOI: 10.1146/annurev-bioeng-121813-120704.
  • Warkiani, M. E.; Tay, A. K. P.; Guan, G.; Han, J. Membrane-Less Microfiltration Using Inertial Microfluidics. Sci. Rep. 2015, 5, 11018.
  • Hsu, C.-H.; Di Carlo, D.; Chen, C.; Irimia, D.; Toner, M. Microvortex for Focusing, Guiding and Sorting of Particles. Lab Chip 2008, 8, 2128–2134. DOI: 10.1039/b813434k.
  • Martinez-Duarte, R.; Gorkin, R. A.; Abi-Samra, K.; Madou, M. J. The Integration of 3D Carbon-Electrode Dielectrophoresis on a CD-like Centrifugal Microfluidic Platform. Lab Chip 2010, 10, 1030–1043. DOI: 10.1039/b925456k.
  • Dressaire, E.; Sauret, A. Clogging of Microfluidic Systems. Soft Matter. 2016, 13, 37–48. DOI: 10.1039/c6sm01879c.
  • Paik, P.; Pamula, V. K.; Fair, R. B. Rapid Droplet Mixers for Digital Microfluidic Systems. Lab Chip 2003, 3, 253–259. DOI: 10.1039/B307628H.
  • Liu, Y.; Cheng, Q.; Zhang, B.; Tian, F. Three-Phase Hydrocyclone Separator–A Review. Chem. Eng. Res. Des. 2015, 100, 554–560. DOI: 10.1016/j.cherd.2015.04.026.
  • Syed, M. S.; Mehdi, R.; Rita, H.; Dries, V.; Mohsen, A.; Majid, E. W. A 3D-Printed Mini-Hydrocyclone for High Throughput Particle Separation: application to Primary Harvesting of Microalgae. Lab Chip 2017, 17, 2459–2469.
  • Maddahian, R.; Bijan, F.; Simin, D. S.; Bilstad, T. Numerical Simulation of Deoilin Hydrocyclones. World Acad. Sci. Eng. Technol. 2011, 59, 2044–2049.
  • Zhu, G.; Liow, J.-L. Experimental Study of Particle Separation and the Fishhook Effect in a Mini-Hydrocyclone. Chem. Eng. Sci. 2014, 111, 94–105. DOI: 10.1016/j.ces.2014.02.017.
  • Vega-Garcia, D.; Brito-Parada, P.; Cilliers, J. Optimising Small Hydrocyclone Design Using 3D Printing and CFD Simulations. Chem Eng. J. 2018, 350, 653–659. DOI: 10.1016/j.cej.2018.06.016.
  • Yuan, H.; Rickwood, D.; Smyth, I. C.; Thew, M. T. An Investigation into the Possible Use of Hydrocyclones for the Removal of Yeast from Beer. Bioseparation 1996, 6, 159–163.
  • Yuan, H.; Thew, M. T.; Rickwood, D. Separation of Yeast with Hydrocyclones. Hydrocyclones 1996, 96, 135–149.
  • Cilliers, J.; Harrison, S. The Application of Mini-Hydrocyclones in the Concentration of Yeast Suspensions. Chem. Eng. J. 1997, 65, 21–26. DOI: 10.1016/S1385-8947(96)03100-2.
  • Yang, L.; Zhang, J.; Ma, Y.; Xu, J.; Wang, J. Experimental and Numerical Study of Separation Characteristics in Gas-Liquid Cylindrical Cyclone. Chem. Eng. Sci. 2020, 214, 115362. DOI: 10.1016/j.ces.2019.115362.
  • Hsieh, K.; Rajamani, R. Mathematical Model of the Hydrocyclone Based on Physics of Fluid Flow. AIChE J. 1991, 37, 735–746. DOI: 10.1002/aic.690370511.
  • Rajamani, R. K.; Milin, L. Fluid-Flow Model of the Hydrocyclone for Concentrated Slurry Classification. In Hydrocyclones. Springer: Cham, 1992; pp. 95–108.
  • Zhang, Y.; Jin, R.; Dong, S.; Wang, Y.; Dong, K.; Wei, Y.; Wang, B. Heterogeneous Condensation Combined with Inner Vortex Broken Cyclone to Achieve High Collection Efficiency of Fine Particles and Low Energy Consumption. Powder Technol. 2021, 382, 420–430. DOI: 10.1016/j.powtec.2021.01.003.
  • Morin, M.; Raynal, L.; Karri, S. B. R.; Cocco, R. Effect of Solid Loading and Inlet Aspect Ratio on Cyclone Efficiency and Pressure Drop: Experimental Study and CFD Simulations. Powder Technol. 2021, 377, 174–185. DOI: 10.1016/j.powtec.2020.08.052.
  • Niazi, S.; Habibian, M.; Rahimi, M. Performance Evaluation of a Uniflow Mini-Hydrocyclone for Removing Fine Heavy Metal Particles from Water. Chem. Eng. Res. Des. 2017, 126, 89–96. DOI: 10.1016/j.cherd.2017.08.009.
  • Medronho, R.; Schuetze, J.; Deckwer, W.-D. Numerical Simulation of Hydrocyclones for Cell Separation. Latin Am. Appl. Res. 2005, 35, 1–8.
  • Gazor, M.; Talesh, S. S. A.; Kavianpour, A.; Khatami, M.; Javidanbardan, A.; Hosseini, S. N. A Novel Cell Disruption Approach: effectiveness of Laser-Induced Cell Lysis of Pichia pastoris in the Continuous System. Biotechnol. Bioproc. E. 2018, 23, 49–54. DOI: 10.1007/s12257-017-0261-6.
  • Gazor, M.; Ashraf Talesh, S. S.; Hosseini, S. N.; Javidanbardan, A.; Khatami, M. High Recovery of Intracellular Recombinant HBsAg from Pichia pastoris via Continuous Pulsed Laser Cell Disruption System Optimized by Response Surface Methodology. Biotechnol. Appl. Biochem. 2019, 66, 91–100. DOI: 10.1002/bab.1701.
  • Moghanloo, G. M. M.; Maryam, K.; Amin, J.; Seyed, N. H. Enhancing Recovery of Recombinant Hepatitis B Surface Antigen in Lab-Scale and Large-Scale Anion-Exchange Chromatography by Optimizing the Conductivity of Buffers. Protein Expr. Purif. 2018, 141, 25–31.
  • Mostafaei, M.; Hosseini, S. N.; Khatami, M.; Javidanbardan, A.; Sepahy, A. A.; Asadi, E. Isolation of Recombinant Hepatitis B Surface Antigen with Antibody-Conjugated Superparamagnetic Fe3O4/SiO2 Core-Shell Nanoparticles. Protein Expr. Purif. 2018, 145, 1–6. DOI: 10.1016/j.pep.2017.12.004.
  • Hosseini, S. N.; Javidanbardan, A.; Alizadeh Salim, B. S.; Khatami, M. Large-Scale Purification of Recombinant Hepatitis B Surface Antigen from Pichia pastoris with Non-Affinity Chromatographic Methods as a Substitute to Immunoaffinity Chromatography. Prep. Biochem. Biotechnol. 2018, 48, 683–692. DOI: 10.1080/10826068.2018.1487854.
  • Hosseini, S. N.; Ghaisari, P.; Sharifnia, S.; Khatami, M.; Javidanbardan, A. Improving the Recovery of Clarification Process of Recombinant Hepatitis B Surface Antigen in Large-Scale by Optimizing Adsorption-Desorption Parameters on Aerosil-380. Prep. Biochem. Biotechnol. 2018, 48, 490–497. DOI: 10.1080/10826068.2018.1466153.
  • Kimia, Z.; Hosseini, S. N.; Ashraf Talesh, S. S.; Khatami, M.; Kavianpour, A.; Javidanbardan, A. A Novel Application of Ion Exchange Chromatography in Recombinant Hepatitis B Vaccine Downstream Processing: Improving Recombinant HBsAg Homogeneity by Removing Associated Aggregates. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1113, 20–29. DOI: 10.1016/j.jchromb.2019.03.009.
  • Yousefipour, M.; Khatami, M.; Javidanbardan, A.; Hosseini, S. N.; Mehrnia, M. Integration of Size-Exclusion Chromatography and Ultracentrifugation for Purification of Recombinant Hepatitis B Surface Antigen: An Alternative Method for Immunoaffinity Chromatography. Prep. Biochem. Biotechnol. 2019, 49, 158–166. DOI: 10.1080/10826068.2018.1550658.
  • Seyfi Mazraeno, M.; Fazlali, A.; Hosseini, S. N. Application of Hydrocyclone for Separation of Pichia pastoris Produced r-HBsAg from Fermentation Culture: Impact of Concentration and Pressure on Hydrocyclone Performance. Prep. Biochem. Biotechnol. 2019, 49, 813–819. DOI: 10.1080/10826068.2019.1621891.
  • Abdollahzadeh, L.; Mazraeno, M. S.; Hosseini, S. N.; Fazlali, A.; Soury, E.; Habibian, M.; Khatami, M. Numerical and Experimental Biomass Separation from Fermentation Process by Minihydrocyclones. Chem. Eng. Technol. 2021, 44, 23–30. DOI: 10.1002/ceat.202000130.
  • Vakamalla, T. R.; Koruprolu, V. B. R.; Arugonda, R.; Mangadoddy, N. Development of Novel Hydrocyclone Designs for Improved Fines Classification Using Multiphase CFD Model. Sep. Purif. Technol. 2017, 175, 481–497. DOI: 10.1016/j.seppur.2016.10.026.
  • Schütz, S.; Gorbach, G.; Piesche, M. Modeling Fluid Behavior and Droplet Interactions during Liquid–Liquid Separation in Hydrocyclones. Chem. Eng. Sci. 2009, 64, 3935–3952. DOI: 10.1016/j.ces.2009.04.046.
  • Bradley, D. The Hydrocyclone: International Series of Monographs in Chemical Engineering; Elsevier: Amsterdam, 2013; Vol. 4.
  • Nenu, R. K. T.; Yoshida, H. Comparison of Separation Performance between Single and Two Inlets Hydrocyclones. Adv. Powder Technol. 2009, 20, 195–202. DOI: 10.1016/j.apt.2008.08.004.
  • Noroozi, S.; Hashemabadi, S. CFD Analysis of Inlet Chamber Body Profile Effects on de-Oiling Hydrocyclone Efficiency. Chem. Eng. Res. Des. 2011, 89, 968–977. DOI: 10.1016/j.cherd.2010.11.017.
  • Motin, A.; Bénard, A. Design of Liquid–Liquid Separation Hydrocyclones Using Parabolic and Hyperbolic Swirl Chambers for Efficiency Enhancement. Chem. Eng. Res. Des. 2017, 122, 184–197. DOI: 10.1016/j.cherd.2017.04.012.
  • Utela, B.; Storti, D.; Anderson, R.; Ganter, M. A Review of Process Development Steps for New Material Systems in Three Dimensional Printing (3DP). J. Manuf. Processes 2008, 10, 96–104. DOI: 10.1016/j.jmapro.2009.03.002.
  • Miller, B. W.; Moore, J. W.; Barrett, H. H.; Fryé, T.; Adler, S.; Sery, J.; Furenlid, L. R. 3D Printing in X-Ray and Gamma-Ray Imaging: A Novel Method for Fabricating High-Density Imaging Apertures. Nucl. Instrum. Methods Phys. Res. A. 2011, 659, 262–268.
  • Hopkins, P. E. Material and Method for Three-Dimensional Modeling; Google Patents, 2005.
  • Raesi, R.; Maddahian, R. Numerical Investigation of Air-Injected Deoiling Hydrocyclones Using Population Balance Model. Chem. Eng. Sci. 2022, 248, 117103. DOI: 10.1016/j.ces.2021.117103.
  • Yohana, E.; Tauviqirrahman, M.; Yusuf, B.; Choi, K.-H.; Paramita, V. Effect of Vortex Limiter Position and Metal Rod Insertion on the Flow Field, Heat Rate, and Performance of Cyclone Separator. Powder Technol. 2021, 377, 464–475. DOI: 10.1016/j.powtec.2020.09.014.
  • Ijaz, M.; Farhan, M.; Farooq, M.; Moeenuddin, G.; Nawaz, S.; Soudagar, M. E. M.; Saqib, H. M.; Ali, Q. Numerical Investigation of Particles Characteristics on Cyclone Performance for Sustainable Environment. Part. Sci. Technol. 2021, 39, 495–503. DOI: 10.1080/02726351.2020.1768610.
  • Vakamalla, T. R.; Mangadoddy, N. The Dynamic Behaviour of a Large‐Scale 250‐mm Hydrocyclone: A CFD Study. Asia‐Pac. J. Chem. Eng. 2019, 14, e2287. DOI: 10.1002/apj.2287.
  • Mokni, I.; Bournot, P.; Mhiri, H. Feed Temperature Effect on Separation Performance of Industrial Hydrocyclone: Advanced CFD Analysis. Sep. Sci. Technol. 2020, 55, 1957–1913. DOI: 10.1080/01496395.2019.1617739.
  • Salmanizade, F.; Ghazanfari Moghaddam, A.; Mohebbi, A. Improvement Hydrocyclone Separation of Biodiesel Impurities Prepared from Waste Cooking Oil Using CFD Simulation. Sep. Sci. Technol. 2021, 56, 1152–1167. DOI: 10.1080/01496395.2020.1749081.
  • Zhang, B.; Jingxuan, Y.; Qiang, Z.; Wenhao, L.; Zhonglin, Z.; Xiaogang, H.; Guoqing, G. Centrifugal Force Caused High-Density Rotating Downward Quasi-Plug Flow in Cyclone Reactors. Chem. Eng. Sci. X 2021, 11, 100101.
  • Zhang, W.; Li, W.-F.; Liu, H.-F.; Wang, F.-C. Effects of Outlets Flow Rates Ratios on Flow Patterns in Cross-Shaped Channels. Phys. Fluids 2021, 33, 063601. DOI: 10.1063/5.0051008.
  • Salvador, F. F.; Ascendino, G. G.; de Faria, É. V.; Barrozo, M. A. D. S.; Vieira, L. G. M. Geometric Optimization of Filtering Cylindrical Hydrocyclones. Powder Technol. 2021, 381, 611–619. DOI: 10.1016/j.powtec.2020.12.036.
  • Gutierrez, J.; Dyakowski T.; Beck, M. S.; Richard, A. W. Using Electrical Impedance Tomography for Controlling Hydrocyclone Underflow Discharge. Powder Technol. 2000, 108, 180–184.
  • Schwerzler, G. I. Recycling of Glaze Waste through Hydrocyclone Separation. Powder Technol. 2005, 160, 135–140. DOI: 10.1016/j.powtec.2005.08.032.
  • Yang, Q.; Li, Z-m.; Lv, W-j.; Wang, H-l. On the Laboratory and Field Studies of Removing Fine Particles Suspended in Wastewater Using Mini-Hydrocyclone. Sep. Purif. Technol. 2013, 110, 93–100. DOI: 10.1016/j.seppur.2013.03.025.
  • Ortega‐Rivas, E. Applications of the Liquid Cyclone in Biological Separations. Eng. Life Sci. 2004, 4, 119–123.
  • Hu, Z.; Wang, B.; Bai, Z.; Lu, Z.; Hu, X.; Zhao, S.; Luo, H. Centrifugal Classification of Pseudo-Boehmite by Mini-Hydrocyclone in Continuous-Carbonation Preparation Process. Chem. Eng. Res. Des. 2020, 154, 203–211. DOI: 10.1016/j.cherd.2019.12.010.
  • Abdollahzadeh, L.; Habibian, M.; Etezazian, R.; Naseri, S. Study of Particle's Shape Factor, Inlet Velocity and Feed Concentration on Mini-Hydrocyclone Classification and Fishhook Effect. Powder Technol. 2015, 283, 294–301. DOI: 10.1016/j.powtec.2015.05.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.